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Abstract

In the newly emerging field of homotopy type theory one seeks homotopy-theoretic mod-
els for intensional Martin-Löf type theory. An important model is provided by the cat-
egory sSet of simplicial sets where dependent types are interpreted as Kan fibrations.
In particular this applies to identity types. However, when it comes to interpreting the
eliminator for identity types problems arise since for the fillers whose existence is guar-
anteed by the axioms of a Quillen model structure it is not obvious how to chose them in
a way which is compatible with reindexing. We present the solution given by Vladimir
Voevodsky and Thomas Streicher based on type-theoretic universes where one chooses
a filler in a slice over a generic context. Since the topos sSet = Set∆op

of simplicial sets
can be considered as a universe within a larger topos SET∆op

this allows us to exhibit
a pullback-stable choice of fillers in sSet.
We also discuss Voevodsky’s Univalence Axiom claiming that isomorphic types (of some
universe) are already equal whenever they are isomorphic in a weak sense. This axiom
can be formulated in the language of intensional type theory and as shown by Voevodsky
in [KLV12] it holds in the simplicial model.
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2.3.3 Interpreting Identity Types in Ũ . . . . . . . . . . . . . . . . . . . 21

3 The Univalence Axiom in the Category of Simplical Sets 23
3.1 The Univalence Axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 The Univalence Axiom in the Category of Simplicial Sets . . . . . . . . . 24
3.3 Synthetic Homotopy Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Bibliography 27

4



Introduction

One of the more confusing aspects of intensional Martin-Löf type theory is its distinction
between judgmental and propositional equality. The former states equality in the sense
of formal rewriting whereas the latter is closer to the mathematical notion of equality in
the sense that it can be proved by induction. For example, when defining addition on
the natural numbers N as

add(n, 0) = n

add(n, succ(m)) = succ(add(n,m))

then although one cannot derive the judgmental equality

n : N ` add(0, n) = n : N

one can still prove propositional equality in the sense that one can derive

n : N ` e : IdN (add(0, n), n)

for some term e. Here
x, y : N ` IdN (x, y)

is a family of types representing the equality predicate on natural numbers.
Generally, for arbitrary types A one can define a family

x, y : A ` IdA(x, y)

whose items are referred to as identity types for A. Intuitively, the type IdA(a, b) is
the type of proofs that a is equal to b. Identity types are an instance of inductively
defined (families of) types. In the particular case of identity types the introduction and
elimination rules are

Γ ` A
(Id-I)

Γ, x:A ` rA(x) : IdA(x, x)

Γ, x, y:A, z:IdA(x, y) ` C(x, y, z) Γ, x:A ` d : C(x, x, rA(x))
(Id-E)

Γ, x, y:A, z:IdA(x, y) ` J((x)d)(z) ∈ C[x, y, z]

and one postulates the conversion rule

J((x)d)(rA(t)) = d[t/x]

specifying how a function defined by the eliminator J is evaluated when applied to a
constructor term.
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Alas, the following rule
Γ ` e : IdA(x, y)

(Id-R)
Γ ` x = y ∈ A

identifying propositional and judgmental equality is not derivable in intensional type
theory. Adding it gives rise to so-called extensional type theory for which, however,
type-checking is unfortunately undecidable, cf. [Hof95, Sec. 3.2.2].

Reasoning in intensional type theory can be quite cumbersome since we cannot replace
propositionally equal objects in arbitrary contexts. However, using J one can exhibit a
term subst such that for b : B(a) and e : IdA(a, a′) the term subst(e, b) is of type B(a′). As
a compensation for this additional bureaucracy one may interpret propositional equality
of types A and B in a universe U as being isomorphic in a fairly weak sense. From
this point of view it appears as most natural that there are different elements of type
IdU (A,B) since A and B may be isomorphic in different ways.

Actually, the groupoid model introduced in [HS94, HS98] was motivated by the de-
sire to produce this phenomenon, namely the failure of the Principle of Uniqueness of
Identity Proofs claiming that any two inhabitants of a given identity type are equal.
In this model types are interpreted as groupoids and families of types as fibrations of
groupoids. An identity type IdA(x, y) is then interpreted by HomA(x, y) and, accord-
ingly, for non-trivial groupoids A the principle of uniqueness of identity proofs fails.
The idea of interpreting types as groupoids was motivated by the observation that in
intensional type theory one can exhibit operations, namely the proofs of transitivity
and symmetry for propositional equality, which endow every type with the structure
of an internal groupoid. However, the groupoid laws for these operations hold only in
the sense of propositional equality. The proof objects for these propositional equalities
can be most naturally understood as 2-cells in the sense of higher-dimensional category
theory. Since identity types can be iterated syntax suggests that one actually has n-cells
for arbitrary n ∈ N. Hence, a more faithful picture of syntax is provided when modeling
types as higher-dimensional groupoids as in [War11]. But since in syntax the required
identities hold only in the sense of propositional equality it appears as even more natural
to interpret types as weak higher-dimensional groupoids aka weak ∞-groupoids. The
simplest and oldest notion of a weak ∞-groupoid is given by so-called Kan complexes
within the topos sSet of simplicial sets, see e.g. [GJ99] for a comprehensive account. In
this model families of types are interpreted as Kan fibrations. The simplicial model has
been investigated by Vladimir Voevodsky in [KLV12].

When interpreting the eliminator J for identity types in this model one has to choose
diagonal fillers for certain square diagrams whose existence is guaranteed by the axioms
of Quillen model structures. However, for interpreting syntax these diagonal fillers have
to be chosen in such a way that these choices are preserved by (chosen) pullbacks in
order to validate the Beck-Chevalley condition for J . In presence of universes this can
be achieved by slicing over a generic context and splitting the generic situation once



and for all. The particular instances of J are obtained as appropriate pullbacks of this
generic solution as described in [Str11a] and [KLV12].

As observed by Voevodsky in [Voe09, KLV12] the simplicial set model validates the
so-called Univalence Axiom stating that (weakly) isomorphic types of the universe are
propositionally equal.

Acknowledgment. I would like to thank Davorin Lešnik, Florian Steinberg and
Stefanie Szabo who took their time to proof-read this thesis and provide helpful com-
ments. Above all I would like to express gratitude for my advisor Thomas Streicher who
has always supported me with great patience.



1 Simplicial Homotopy Theory

We provide the necessary background on model categories and simplicial homotopy
theory inspired by [GJ99]. The definition of model categories via weak factorization
systems is taken from [AHRT02].

1.1 Model Categories

Definition 1.1.1 (Lifting Properties). In a given category, we consider the following
commutative diagram:

A
f //

i
��

X

p

��
B g

// Y

A (diagonal) filler is a map h : B → X such that the resulting diagram

A
f //

i
��

X

p

��
B

h

>>

g
// Y

is commutative. We say i has the left lifting property with respect to p. Conversely, p
has the right lifting property with respect to i.

Definition 1.1.2 (Orthogonality). We write f⊥g and say f is orthogonal to g if for
every diagram

A //

f
��

X

g

��
B // Y

there is a (not necessarily unique) diagonal filler.
If A is a class of morphisms, we define the following morphism classes:

A⊥ := {g : f⊥g for all f ∈ A}
⊥A := {f : f⊥g for all g ∈ A}

Definition 1.1.3 (Weak Factorization System). A weak factorization system in a cate-
gory is a pair (L,R) of nonempty classes of morphisms such that:
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(i) Every morphism f can be factored as f = p ◦ i for i ∈ L and p ∈ R.

(ii) R = L⊥ and L = ⊥R

Definition 1.1.4 (Model Category). A model category is a category with finite limits
and colimits together with the following classes of morphisms:

• the class W of weak equivalences

• the class F of fibrations

• the class C of cofibrations

The following conditions are required to hold:

(MC1) If two of three maps f , g and f ◦ g are weak equivalences, then so is the third
(Two-for-Three-Law).

(MC2) The pairs (C,F ∩W) and (C ∩W,F) are weak factorization systems.

Elements of F ∩ W are called trivial fibrations. Elements of C ∩ W are called trivial
cofibrations.
Instead of “trivial” some authors use the words anodyne or acyclic.

Every model category has an initial object 0 and a terminal object 1. Hence, the following
definition makes sense.

Definition 1.1.5 (Fibrant and Cofibrant Objects). Let C be a model category. An
object A ∈ ob(C) is called fibrant if A → 1 is a fibration. Dually, A is said to be
cofibrant if 0→ A is a cofibration.

Example 1.1.6 (Topological Spaces with Serre Fibrations). The category Top has the
structure of a model category by defining:

(i) A map is a weak equivalence if it is a weak homotopy equivalence, i.e. it induces
a bijection on the π0-sets and isomorphisms between the homotopy groups of the
respective spaces.

(ii) A map f : X → Y is a fibration if it is a Serre fibration, i.e. it has the right lifting
property with respect to ∆n × {0} → ∆n × [0, 1]:

∆n × {0} //
��

��

X

f

��
∆n × [0, 1]

::

// Y

(iii) A map is a cofibration if it has the left-lifting property with respect to trivial
fibrations.



Given this structure, every space is fibrant.

Example 1.1.7 (Topological Spaces with Hurewicz Fibrations). The category Top can
be given another model structure by defining:

(i) A weak equivalence is a homotopy equivalence.

(ii) A fibration is a Hurewicz fibration. This is a map p : X → Y with the homotopy
lifting property, i.e. for every space there exists a filler such that the diagram

A× {0} //
��

��

X

p

��
A× [0, 1]

;;

// Y

commutes.

(iii) A cofibration is a closed Hurewicz fibration. By this we mean a subspace inclusion
i : A→ B where A is closed in B and i has the homotopy extension property. This
means for every space Y there exists a filler as in the following diagram:

B × {0} ∪A× [0, 1] //

��

Y

��
B × [0, 1]

77

// •

Indeed the preceding model structures on Top are different in that they yield different
morphism classes. For the so-called Warsaw circle W the map W → • is a weak
equivalence in the sense of 1.1.6, but not 1.1.7, cf. [DS95, Sec. 3, Ex. 3.6].

1.2 Simplicial Sets

The motivation for simplicial sets is to organize combinatorially defined simplices into
sets according to their dimensions and to incidence relations.

Definition 1.2.1 (Simplicial Category). The simplicial category ∆ contains as objects
the finite non-empty ordinals

[n] = {0→ 1→ . . .→ n}

and as morphisms monotone maps between them.

Definition 1.2.2 (Simplical Sets). A simplicial set is a functor

∆op → Set,

i.e. a set-valued presheaf on the category ∆. The category of simplicial sets with natural
transformations between them is denoted by sSet. If X is a simplicial set, we write
Xn := X([n]) and refer to the elements of Xn as the n-simplices of X. For 0 ≤ k ≤ n,
an injective map [k]→ [n] in ∆ is called a non-degenerate k-simplex of ∆n.



Definition 1.2.3 (Faces and Degeneracies). For 0 ≤ i, j ≤ n we define the so-called
coface maps

di : [n− 1]→ [n], di(0→ . . .→ n− 1) := (0→ . . .→ î→ . . .→ n),

where î means leaving out the i-th place, and the codegeneracy maps

sj : [n+ 1]→ [n], sj(0→ . . .→ n+ 1) := (0→ . . .→ j
idj→ j → . . .→ n).

One can readily verify the following cosimplicial identities:

djdi = djdj−1 if i < j

sjsi = sisj+1 if i ≤ j

djsi =


disj−1 if i < j

id if i ∈ {j, j + 1}
si−1dj if j + 1 < i

Each morphism in ∆ can be written as the product of some di precomposed by the
product of some sj , see [Mac98, Ch. VII, 5., Prop. 2]. Hence a simplicial set X can
be seen as a graded set (Xn)n≥0 together with induced morphisms di := X(di) and
sj := X(sj) satisfying the simplicial identites:

didj = dj−1di if i < j

sisj = sj+1si if i ≤ j

sidj =


sj−1di if i < j

id if i ∈ {j, j + 1}
djsi−1 if j + 1 < i

Definition 1.2.4 (Standard n-Simplex in sSet). In the category of simplicial sets sSet,
the standard n-simplex ∆n is the contravariant functor represented by [n], i.e.

∆n := Hom∆(−, [n]).

In particular, the 0-simplex is the terminal object ∆0 = •.

Remark 1.2.5. By the Yoneda Lemma, n-simplices of Y are classified by simplicial
maps ∆n → Y . There is a natural isomorphism

HomsSet(∆
n, Y ) ∼= Yn.

Definition 1.2.6 (Boundary and Horn). The boundary of ∆n, written ∂∆n, is the
subcomplex generated by the (n− 1)-faces of the standard simplex, i.e.

∂∆n :=
n⋃
i=0

∂i∆n



with ∂i∆n := y(di). More explicitly

∂∆n([m]) = {α : [m]→ [n] : α is not an epimorphism}.

The k-th horn of ∆n for 0 ≤ k ≤ n is the subcomplex Λnk generated by all such faces
except the k-th one, i.e.

Λnk :=
⋃
i 6=k

∂i∆n.

1.2.1 Geometric Realization

Definition 1.2.7 (Standard n-Simplex in Top). The standard n-simplex functor is

|−| : ∆→ Top

where

|[n]| :=

{
n∑
i=0

tiei ∈ Rn+1 : ti ≥ 0,
n∑
i=0

ti = 1

}
and a morphism α : [n]→ [m] is mapped to

|α| : |[n]| → |[m]| ,
n∑
i=0

tiei 7→
n∑
i=0

tieα(i).

Definition 1.2.8 (Singular Complex and Singular Functor). Let X be a topological
space. The simplicial set

S(X) : ∆op → Set, [n] 7→ HomTop(|∆n| , X)

is called singular complex S(X). This yields a functor

S : Top→ sSet, X 7→ S(X),

called the singular functor.

In order to turn a simplicial set into a geometric object, we want to define a functor
|−| : sSet → Top, called geometric realization, which extends the standard n-simplex
functor. It will be given as the left-adjoint to the singular functor.

Definition 1.2.9 (Geometric Realization). The geometric realization of a simplicial set
X is given as the colimit

|X| := colim
∆n→X
in ∆/X

|∆n|

in the category of topological spaces.

Lemma 1.2.10. Let X be a simplicial set. There is an isomorphism

X ∼= colim
∆n→X
in ∆/X

∆n = colim
∆n→X
in ∆/X

Hom∆(−, [n]).



Proof. By [MM92, Ch. 1, 5., Prop. 1] any presheaf Cop → Set is the colimit of a family
of representable objects if C is a small category. By the proof given in the reference, in
our situation, X turns out to be the colimit of the diagram

Elts(X)
π−→ ∆

Hom∆(−,[n])−→ Set∆op
. (1.1)

where π : Elts(X)→ ∆ denotes the projection from the category of elements. By Remark
1.2.5 any element in Xn can be canonically regarded as a morphism ∆n → X in ∆/X,
hence, in (1.1) we may as well take the colimit over the morphisms of the category
∆/X.

Theorem 1.2.11 (Adjunction |−| a S). The geometric realization functor is left adjoint
to the singular spaces functor, i.e. there is an isomorphism

HomTop(|X| , Y ) ∼= HomsSet(X,SY )

natural in both simplicial sets X and topological spaces Y .

Proof. By the cocontinuity of contravariant representable functors we have

HomTop(|X| , Y ) ∼= colim
∆n→X
in ∆/X

HomTop(|∆n| , Y ) = colim
∆n→X
in ∆/X

SY ([n]).

Remark 1.2.5 yields that this is isomorphic to colim∆n→X
in ∆/X

HomsSet(∆
n, SY ) which, again

by cocontinuity is isomorphic to HomsSet(X,SY ).

Theorem 1.2.12. For each simplicial set, the geometric realization |X| is a CW-
complex.

For a proof cf. [GJ99, Ch. I, 2., Prop 2.3].

1.2.2 The Model Structure on the Category of Simplicial Sets

Definition 1.2.13 (Kan Fibration). A morphism of simplicial sets f : X → Y is called
a Kan fibration if every commuting square indicated as follows has a diagonal filler:

Λnk
��

��

// X

f
��

∆n

>>

// Y

Definition 1.2.14 (Kan Complex). A simplicial set X is a Kan complex if it is fibrant
with respect to Kan fibrations, i.e. every morphism α : Λnk → X can be extended to a
map α : ∆n → X in the following sense:

Λnk
��

��

α // X

∆n

α

>>



Definition 1.2.15 (Weak equivalences). A morphism f : X → Y is a weak equivalence
if the induced map |f | : |X| → |Y | is a homotopy equivalence, i.e. there is a continuous
map ϕ : |Y | → |X| such that |f | ◦ ϕ ' id|Y | and ϕ ◦ |f | ' id|X|.

It is a deep theorem that this defines the structure of a model category in sSet:

Theorem 1.2.16. The category sSet becomes a model category by defining

• weak equivalences to be weak equivalences as defined above,

• fibrations to be Kan fibrations,

• cofibrations to be monomorphisms.

A proof can be found in [GJ99, Ch. I.11, Thm. 11.3].

1.2.3 Slice Categories and Right-Properness

Theorem 1.2.17 (Stability under Slicing). Let C be a model category and X ∈ ob(C).
We define a map in C/X to be a fibration, cofibration or weak equivalence, resp., if the
underlying map in C is a fibration, cofibration or weak equivalence, resp. This gives rise
to a model category structure on C/X.

Definition 1.2.18. A model category is called right proper iff the class of weak equiv-
alences is closed under pullbacks along fibrations.

Theorem 1.2.19. If C is a right proper model category, then so is C/X for any object
X in C.

Indeed, sSet is an instance of a right-proper model category.
For further details see [AK12, Sec. 3].



2 Interpreting Martin-Löf Type Theory
in a Universe in sSet

2.1 Interpreting Types and Identity Types in sSet

The judgment ` A that A is a type is interpreted by a fibrant object A in sSet. A context
Γ ` A is interpreted as a fibration having the interpretation of Γ as the codomain. A
term Γ ` a : A in a context Γ is interpreted as a section of the interpretation of Γ ` A.
Following Steve Awodey and Michael Warren in [AW09], the identity type Id(A) on
a type A is interpreted by the path object Id(A) := AI for I := ∆1. This yields a
factorization of the diagonal δA : A→ A×A as

A

δA ""

rA // Id(A)

pA
��

A×A

where rA : A→ AI is obtained by transposition from the projection I ×A→ A, and the
map pA : AI → A∂I ∼= A×A is induced by the inclusion ∂I → I.

2.2 Lifting Grothendieck Universes to Type-Theoretic
Universes

According to our interpretation, a family of types is given as a Kan fibration a : A→ J .
We want to interpret the respective identity type in an analogous way by factoring the
fiberwise diagonal δa : A→ A×J A defined by:

A

δa

##
A×J A
pr1

��

pr2 // A

a
��

A a
// J

But these factorizations are in general not stable under change of base, i.e. under a
choice of pullbacks along some u : J → I. Explicating the ideas in [Str04], [Str11a] and
[HS99], we want to solve this problem by introducing type-theoretic universes in the
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sense of Martin-Löf. These universes are split in the sense that they admit a functorial
choice of fillers of square diagrams that is consistent with change of base.
To construct a universe inside a presheaf topos let U be a Grothendieck universe in Set.
If C is a category internal to U , this gives rise to a morphism pU : Ũ → U in Ĉ = SetC

op
,

serving as a type-theoretic universe, by defining

U(I) := U (C/I)op
, U(α) := UΣop

α

where for α : J → I the functor Σα : C/J → C/I is postcomposition with α. We then
let

Ũ(I) := {〈A, a〉 : A ∈ U(I), a ∈ A(idI)}

and
Ũ(α)(〈A, a〉) = 〈U(α)(A), A(α

α−→ idI)(a)〉

for α : J → I in C.

Definition 2.2.1 (U-small Family). Let f : B → A be a presheaf morphism in Ĉ and
U a Grothendieck universe in Set. Then f is called U-small if for all I ∈ ob(C) and
a ∈ A(I) the fiber f−1

I (a) is isomorphic to some set in U .

Definition 2.2.2 (Genericity). Let A be a class of morphisms in Ĉ. A morphism f in
A is said to be generic or universal for A if every morphism in A can be obtained as a
pullback of f along some morphism in Ĉ.

Theorem 2.2.3. The morphism pU is generic for U-small maps.

For the proof, cf. [Str04, Sec. 3].

2.3 Splitting the Classical Model Category Structure on
Simplical Sets

2.3.1 The Generic Universe Ũ

As we want to model type theory in simplicial sets we have to consider the case C = ∆.
We adapt the idea of the previous subsection, but restrict the universe to Kan fibrations.
First, note that for A ∈ Ĉ we have

Êlts(A) ' Ĉ/A

where Elts(A) = yC ↓ A. Now, the category of U-valued presheaves U (C/I)op
is equivalent

to the full subcategory of Ĉ/y(I) of morphisms with U-small fibers.
By the Grothendieck construction, for A ∈ U (∆/[n])op

there is a corresponding morphism
of simplicial sets PA : Elts(A)→ ∆n.
We then define

U([n]) :=
{
A ∈ U (∆/[n])op

: PA is a Kan fibration
}
.



As Kan fibrations are stable under pullbacks, the newly defined U is a sub-presheaf of
the old one. It also follows that for morphisms α in ∆ we can define Ũ and pU as we
did before, but restricted to our newly constructed U .

Theorem 2.3.1. The class U defined above is a universe in Ĉ, i.e. pU : Ũ → U is a
Kan fibration and generic for U-small Kan fibrations.

Proof. To show that pU is a Kan fibration we have to find a diagonal filler for the
diagram:

Λnk
��

x∗pU
��

α // Ũ

pU

��
∆n

x
// U

By definition of pU , the pullback x∗pU : • → ∆n is a Kan fibration, hence we have a
diagonal filler in:

Λnk
��

��

// •

x∗pU
��

∆n

==

∆n

This gives rise to a diagram

Λnk
��

��

//

α

((•

x∗pU
��

// Ũ

pU

��
∆n

==

∆n
x
// U

yielding the desired filler ∆n → Ũ .
Now, let a : A → I be a U-small Kan fibration. Then, by the definition of pU we have
that a is the pullback of pU along some morphism that sends a generalized element
x : ∆n → I to an element of U (∆/[n])op

corresponding to x∗a.

We want to show that the simplicial set U is a Kan complex. This has been proved
by André Joyal in the note [Joy11] and Chris Kapulkin, Peter Lumsdaine and Vladimir
Voevodsky in [KLV12].
See [May67, Ch. II, Sec. 10] for the following definition needed for technical reasons.

Definition 2.3.2 (Minimal Kan fibration). A Kan fibration f : X → Y is called minimal
if for each n ∈ N and x, x′ ∈ Xn the conditions f(x) = f(x′) and di(x) = di(x

′), i 6= k,
imply dk(x) = dk(x

′).

Theorem 2.3.3 (Quillen’s Lemma). Let f : Y → X be a fibration. Then there is a
factorization f = p ◦ g, where p is a minimal fibration and g is a trivial cofibration.



Lemma 2.3.4. Let X be a contractible simplicial set, i.e. |X| is a contractible topological
space. If x0 ∈ X and p : Y → X is a minimal fibration with fiber F := Yx0, then there is
an isomorphism:

Y

p

��

∼= // F ×X

pr2{{
X

Lemma 2.3.5. Let f : A → B be a cofibration and consider the induced pullback
f∗ : sSet/B → sSet/A. In the chain of adjoints Σf a f∗ a Πf we have:

(i) The adjoint Πf : sSet/A→ sSet/B preserves trivial fibrations.

(ii) The counit f∗Πf → idsSet/A is an isomorphism.

(iii) If p : E → A is U-small, then so is Πfp.

Proof. (i) Let p : X → Y be a trivial fibration and g : V → W a cofibration. As C is
stable under pullbacks, any diagram of the form

f∗V //
��

f∗g
��

X

p

��
f∗W

==

// Y

has a diagonal filler. By transposition there is also a diagonal filler in:

V //

g

��

ΠfX

Πfp

��
W

==

// ΠfY

This means that Πfp is a trivial fibration.

(ii) Since f is a monomorphism, the functor Σf with Σf (p) = f ◦ p is full and faithful.
Hence, the unit idsSet/A → f∗Σf is an isomorphism, and by transposition f∗Πf →
idsSet/A as well (cf. [Mac98, Ch. VII, Sec. 4, Lem. 1]).

(iii) Let x : ∆n → B be an n-simplex. An element of the fiber (Πfp)
−1 (x) is an n-

simplex y of ΠfE such that the diagram

∆n

x
  

y // ΠfE

Πfp}}
B



commutes. By transposition, y corresponds to ỹ such that the diagram

A×B ∆n

f∗x
$$

ỹ // E

p
��

A

commutes. Hence (Πfp)
−1 (x) ∼= HomsSet/B(x,Πfp) ∼= HomsSet/A(f∗x, p). Con-

sidering the pullback diagram

A×B ∆n

f∗x
��

// // ∆n

x
��

A //
f

// B

we see that the pullback A ×B ∆n is a subobject of ∆n, hence contains only
finitely many non-degenerate simplices. Thus, f∗x : A ×B ∆n → A injects into
finitely many fibers of p and consequently is U-small.

Theorem 2.3.6 (Joyal). Let t : Y → X be a trivial fibration and j : X → X ′ a cofibra-
tion. Then there exists a trivial fibration t′ : Y ′ → X ′ such that

Y // //

t
��

Y ′

t′

��
X //

j
// X ′

is a pullback. If t is U-small, then t′ can be chosen U-small as well.

Proof. Let t′ := j∗t. By Lemma 2.3.5(i), t′ is a trivial fibration. Because of (ii), we have
j∗t′ ∼= t, and (iii) implies U-smallness.

We are now able to prove the desired result.

Theorem 2.3.7. The simplicial set U is a Kan complex.

Proof. We have to show that we can extend any horn in U to a simplex:

Λnk
��

��

// U

∆n

>>

By construction of pU such a horn corresponds to a U-small fibration q : Y → Λnk .
Quillen’s Lemma yields a factorization of q as

Y

q

::
q1 // Y0

q2 // Λnk



where q1 is a trivial fibration and q2 a minimal fibration. Both are still U-small: Since a
trivial fibration is surjective, each fiber of q2 is a quotient of a fiber of q, and thus small.
By Lemma 2.3.4, there is an isomorphism Y0

∼= F × Λnk , so there is a pullback:

Y0 // //

q2

��

F ×∆n

��
Λnk // // ∆n

Applying Joyal’s Theorem 2.3.6 to the trivial fibration q1, we get a trivial fibration
Y ′ → F ×∆n making the diagram

Y //

q1
��

Y ′

��
Y0 // // F ×∆n

commute. Finally, we can glue the diagrams as follows:

Y

q1
��

// Y ′

��
Y0 // //

q2

��

F ×∆n

��
Λnk // // ∆n

Since q1 and q2 are U-small, by Theorem 2.3.6, the maps Y ′ → F×∆n and F×∆n → ∆n

are U-small fibrations, and so is their composite.

2.3.2 Interpreting Dependent Sums and Products in Ũ

For a fibration f : B → A, the dependent product along f is interpreted by Πf and the
dependent sum is interpreted by Σf , respectively. Since types are interpreted by Kan
complexes, Πf and Σf are required to preserve fibrations. The statement is clear for
Σf = f ◦ (−) since the class of fibrations is closed under composition. Since f∗ a Πf is
an adjunction between model categories, Πf preserves fibrations and anodyne fibrations
if and only if f∗ preserves cofibrations and trivial cofibrations. The latter is true as sSet
is right-proper.



2.3.3 Interpreting Identity Types in Ũ

To interpret identity types in this universe, as in [AW09] we consider the fiberwise
diagonal δŨ : Ũ → Ũ ×U Ũ over the pullback

Ũ

δŨ
##
Ũ ×U Ũ
pr1
��

pr2 // Ũ

pU

��
Ũ pU

// U

and a factorization

Ũ

δŨ ""

rŨ // IdŨ

pŨ
��

Ũ ×U Ũ

where pŨ is a fibration and rŨ is a trivial cofibration.
Let I be a simplicial set. If pC : C → IdA is a fibration in sSet/I and d : A → C a
morphism in sSet/I with pC ◦ d = rA then one can choose J(d) in sSet/I such that

A

rA
��

d // C

pC
��

IdA

J(d)
<<

IdA

commutes since (C ∩ W)⊥ = F (cf. [AW09]). Now, for any square in a slice we can
still find such a filler J(d). But given some u : K → I, in general u∗ will not preserve
this choice of fillers. In other words, the Beck-Chevalley condition for K does not hold
in general. Using the methods introduced in the previous paragraphs, we will split the
model category structure once and for all to obtain a consistent choice of fillers.
The eliminator J arises in the elimination rule for identity types. To interpret J , we
pull back the diagram along the projection p, which goes from the generic context

A : U,C : (x, y : A)U IdA(x,y), d : (x : A)C(x, x, rA(x))

to U . As p is a Kan fibration and pullbacks along Kan fibrations preserve weak equiva-
lences, also p∗rŨ is an anodyne cofibration.

Let q : C̃ → p∗IdŨ be the interpretation of the type family

Γ, x, y : A, z : IdA(x, y, z) ` C(x, y, z)

and d : p∗Ũ → C̃ be the interpretation of the term

Γ, x, y : A, z : IdA(x, y, z) ` d(x) : C(x, y, z).



Then we have the factorization p∗rŨ = q ◦ d. As q is a Kan fibration and p∗rŨ a trivial
cofibration, the model category structure of sSet yields a map J such that the diagram

p∗Ũ

p∗rŨ
��

d // C̃

q

��
p∗IdŨ

J

;;

p∗IdŨ

commutes.
Let ∆ a Γ : sSet → Set where Γ = HomsSet(1,−) is the global sections functor. All
discrete simplicial sets ∆(S) =

∐
S 1 are Kan complexes and all ∆(f) are Kan fibrations.

Hence, sSet contains Set as a submodel. Just as we considered a Grothendieck universe
U in Set, we can consider Set as a Grothendieck universe in a larger model SET of set
theory. Thus, Set gives rise to a universe pU : Ũ → U in sSET := SET∆op

for which
we have a split choice of J by the above considerations. This allows one to interpret J
in sSet in such a way that it is stable under the choice of pullbacks given by U .



3 The Univalence Axiom in the
Category of Simplical Sets

In this section we briefly discuss Voevodsky’s Univalence Axiom on which more detailed
information can be found in [Str11b, KLV12, PW12].

3.1 The Univalence Axiom

Let X and Y be types in a universe U . In addition to the identity type IdU (X,Y ) one
can define a type Weq(X,Y : U) of weak equivalences from X to Y in the following way:

isContr(X : U) = (Σx : X)(Πy : Y )IdX(x, y)

hFiber(X,Y : U)(f : X → Y )(y : Y ) = (Σx : X)IdY (f(x), y)

isWeq(X,Y : U)(f : X → Y ) = (Πy : Y )isContr(hFiber(X,Y, f, y))

Weq(X,Y : U) = (Σf : X → Y )isWeq(X,Y, f)

Using J one can define a map

eqWeq(X,Y : U) : IdU (X,Y )→Weq(X,Y : U)

sending rU (X) : IdU (X,X) to the weak equivalence idX : Weq(X,X : U). Now we can
formulate Voevodsky’s Univalence Axiom.

Univalence Axiom. The map eqWeq(X,Y : U) : IdU (X,Y ) → Weq(X,Y : U) is a
weak equivalence, i.e. one postulates a constant

UA : (ΠX,Y : U)isWeq(eqWeq(X,Y : U)).

As shown e.g. in [PW12] the proposition isWeq(X,Y )(f) is equivalent to the requirement
that f be a weak isomorphism meaning that there is a map g : Y → X such that g ◦ f
and f ◦ g are pointwise equal to the respective identities, i.e.

isIso(X,Y )(f) = (Σg : Y → X) ((Πx : X)IdX(g(f(x)), x))× ((Πy : Y )IdY (f(g(y)), y)) .

In the simplicial set model the proposition isIso(X,Y )(f) expresses that f is a homotopy
equivalence. This is in accordance with the fact that maps between Kan complexes are
weak equivalences if and only if they are homotopy equivalences.

23



As an alternative and convenient reformulation of the Univalence Axiom one may pos-
tulate a constant WeqIndElim of type

(ΠC : (ΠX,Y : U))Weq(X,Y )→ U)

(Πd : (ΠX : U))C(X,X, eqWeq(rU (X)))

(ΠX,Y : U)(Πe : Weq(X,Y ))C(X,Y, e)

which allows one to prove a property for all weak equivalences by showing it just for
those of the form eqWeq(rU (X)).
This provides a most useful induction principle for weak equivalences.
The Principle of Function Extensionality

((Πx : X)IdY (f(x), g(x))→ IdX→Y (f, g))

is not derivable in intensional type theory (hence the epitheton “intensional”) but it can
be derived from the Univalence Axiom as shown by Nicola Gambino in [Gam11].

3.2 The Univalence Axiom in the Category of Simplicial
Sets

Indeed, the Univalence Axiom holds in sSet. This has been proven by Chris Ka-
pulkin, Peter Lumsdaine and Vladimir Voevodsky in [KLV12] as well as Ieke Moerdijk in
[Moe11]. We do not give details but formulate explicitly the categorical property which
has to be proved in order to guarantee the validity of the Univalence Axiom. Let B be
a simplicial set. For morphisms p : E → B and p′ : E′ → B the exponential in sSet/B
is given by

homB(p, p′)(b) = HomsSet(b
∗p, b∗p′)

where b : ∆n → B is an an n-simplex of B. For Kan fibrations p and p′ one can show
that homB(p, p′) → B is a Kan fibration. In this case one may consider the subobject
WeqB(p, p′) of homB(p, p′) consisting of those w : b∗p→ b∗p′ which are weak equivalences.
As shown in [KLV12] the map WeqB(p, p′)→ B is again a Kan fibration.
For a Kan fibration p let Weq(p) := WeqB×B(pr∗1p,pr∗2p). We consider the diagonal map
δ : p→Weq(p) over B ×B sending a simplex b : ∆n → B to the identity on b∗p. Now a
fibration p : E → B is called univalent if δ : p→Weq(p) is a weak equivalence. In other
words, univalence claims that δ : p→ Weq(p) is a trivial cofibration which is equivalent
to δ having the left lifting property with respect to Kan fibrations. Since Kan fibrations
are stable under arbitrary pullbacks univalence is equivalent to the requirement that any
square

E

δ
��

d // C

q

��
Weq(p)
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with a Kan fibration q : C → Weq(p) has a diagonal filler. This condition expresses the
validity of the aforementioned induction principle for weak equivalences.
The name “univalence” may be motivated by the fact that it expresses the injectivity of
the family

A : U ` U

in the sense that weakly isomorphic types of U are already propositionally equal.

3.3 Synthetic Homotopy Theory

One of the most promising aspects of homotopy type theory is to use the language of type
theory for developing homotopy theory in a “synthetic” way. This means that instead
of explicitly constructing path spaces in some concrete model like Top or sSet one
postulates the existence of identity types. A most readable introduction to this aspect
can be found in [PW12] where the development is accompanied by Coq code illustrating
how this endeavor can benefit from using an interactive theorem prover based on type
theory. For example in Coq it is shown that a map between types in the universe is a
weak equivalence if and only if it is a homotopy equivalence. An even more immediate
example is the verification that for every A : U and a : A the type IdA(a, a) is a group,
the so-called loop space.
Using the language of type theory one can define homotopy levels or h-levels as predicates
on the universe by induction over the natural numbers. Types of h-level 0 are the
contractible spaces and types of h-level n + 1 are those types A for which all identity
types IdA(a, b) are of h-level n. One easily proves by induction that a type of h-level n
is also of h-level n+ 1.
For example a type A is of h-level 1 if all identity types IdA(a, b) are contractible,
i.e. all elements of A are propositionally equal and all these equality propositions are
contractible. For this reason in [PW12] types of h-level 1 are called h-propositions.
Families of h-propositions are weakly classified by the map i1 : 1 → 1 + 1. Types of
h-level 2 are all those types all whose identity types are h-propositions for which reason
they are called h-sets in [PW12]. It is easy to show that types of h-level n are closed
under dependent products of families indexed by types in U .
The language of type theory does not allow one to define a basic geometric object such
as spheres. To overcome this limitation there have been considered so-called higher
inductive types, cf. [Shu12]. However, it is not clear so far to which extent these new
forms of inductive definition can be given a computational meaning.
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