
THE SO(10)-GRAND UNIFIED THEORY

JONATHAN WEINBERGER

Abstract. The SO(10) GUT is constructed as an extension of the SU(5) Theory and natu-
rally acts on the whole of Λ(C5) as a representation space. In particular, in this theory the
laws of hypercharges from the Standard Model arise as simple consequences by assuming the
existence of right-handed neutrinos.

We construct the necessary representations from the Spin groups in even dimension. Thus,
we give a brief introduction into the structure and representation theory of Clifford algebras
and Spin groups.

The account is mostly based on [BH10], [HBLM89, Ch. 1], [MFAS64] and [HN12, Ch. 17,
Sec. 1; App. B, Sec. 3].
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1. Clifford Algebras and Spin Groups

1.1. Clifford Algebras. Let k ∈ {R,C}. In the following, all k-algebras are assumed finite-
dimensional, associative and unital and with 1 denoting the respective one-element.

Definition 1.1 (Clifford Algebra). Let V be a k-algebra and q a quadratic form on V . We
consider the tensor algebra

T (V ) :=

∞⊕
n=0

V ⊗r

and the ideal Iq E T (V ) generated by all elements of the form

v ⊗ v + q(v) · 1, v ∈ V,

or equivalently

v ⊗ w + w ⊗ v = −2Q(v, w), v, w ∈ V,
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with the polarization

Q(v, w) :=
1

2
(q(v + w)− q(v)− q(w)) .

The quotient algebra
Cl(V, q) := T (V )/Iq

is called the Clifford algebra of V with respect to q.

There is a canonical embedding ι : V � Cl(V, q) given as the composition

V = V ⊗1 //

ι
++

T (V ) // Cl(V, q).

With this, the generating relations induce the following universal mapping property.

Theorem 1.2 (Universal Mapping Property). Let f : V → A be a k-linear map into a k-algebra
A such that

f(v)2 = −q(v) · 1, v ∈ V.
Then there is a unique k-algebra homomorphism f̃ : Cl(V, q) → A such that the following
diagram commutes:

Cl(V, q)
f̃ // A

V
OO

ι

OO

f

;;

We give some lower-dimensional examples and also introduce the kind of real Clifford alge-
bras we are going to work with in the following sections.

Example 1.3.

(1) If q is trivial, we can identify the Clifford algebra with the exterior algebra. We have
k-linear isomorphism given by

ϕ : Cl(V, 0)→ Λ(V ), ϕ(e1 · . . . · en) := e1 ∧ . . . ∧ en
for an orthonormal basis {e1, . . . , en}.

(2) Let V be one-dimensional and e ∈ V a basis element. As an algebra, Cl(V, q) is
generated by 1 and x := ι(e) where by definition x2 = q(e, e) =: a, so Cl(V, q) ∼=
k[X]/(X2 − a) =: Cl(k, a). We now distinguish cases with respect to q:
• If q = 0, then we obtain the ring of dual numbers, i.e. Cl(k, 0) ∼= k[X]/(X2) which

can be pictured as “first-order Taylor expansions” of formal polynomials.
• If q 6= 0 and a = b2 for some b ∈ k, then x := b−1e is a basis element of V such

that q(x, x) = 1, so Cl(k, a) = k[X]/(X2− 1). For c := 1
2(1 +x) and c := 1

2(1−x)
we obtain two idempotent elements in Cl(k, a) such that cc = 0 and c + c = 1,
hence Cl(k, a) ∼= k ⊕ k.
• If on the other hand a is not a square in k, the polynomial X2 − a is irreducible

over k and we obtain the splitting field Cl(k, a) ∼= k[X]/(X2 − a).
(3) If k = R, we consider on Rp+q the graded standard scalar product given by

〈v, w〉p,q :=

p∑
i=1

viwi −
p+q∑
i=p+1

viwi.

The corresponding Clifford algebra is denoted by

Clp,q := Cl
(
Rp+q, 〈v, w〉p,q

)
.
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However, in our cases of application, it suffices to stick to the definite algebras

Cln := Cln,0.

(4) Using the above considerations we find Cl1 ∼= C, Cl0,1 ∼= R ⊕ R. Furthermore Cl2,0 ∼=
H, where H denotes the skew-field of quaternions, and Cl0,2 ∼= Cl1,1 ∼= M2(R) (cf.
[HBLM89, Ch. 1, Sec. 4]).

The dimension of a Clifford algebra is given by dimCl(V, q) = 2dim(V ).
The next consideration is important for the study of the structure and hence the represen-

tations of Clifford algebras.

Definition 1.4 (Involution and grading of Cl(V, q)). By the universal mapping property 1.2
there is a unique involutive automorphism ω : Cl(V, q)→ Cl(V, q) such that

ω ◦ ι = −ι,

called the grading automorphism. This is due to the reason that the eigenspaces

Cl(V, q)0 := ker(ω − 1) and Cl(V, q)1 := ker(ω + 1)

introduce a Z/2Z-grading on Cl(V, q), i.e.

Cl(V, q) ∼= Cl(V, q)0 ⊕ Cl(V, q)1

and

Cl(V, q)a · Cl(V, q)b ⊂ Cl(V, q)a+b, a, b ∈ Z/2Z.

1.2. Clifford Groups.

Definition 1.5 (Twisted adjoint representation and Clifford group). The twisted adjoint rep-
resentation of the unit group Cl(V, q)× on the algebra Cl(V, q) is defined by

Ad: Cl(V, q)× × Cl(V, q)→ Cl(V, q), (a, x) 7→ Ad(a)x := ω(a)xa−1.

The stabilizer of the subspace V ∼= ι(V ) ⊂ Cl(V, q) is called the Clifford group

Γ(V, q) :=
{
a ∈ Cl(V, q)× : Ad(a)V = V

}
.

The twisted adjoint representation of the unit group induces a representation of the Clifford
group

Φ: Γ(V, q)→ GL(V ), a 7→ Ad(a)|V .

Again, the universal mapping property of Clifford algebras 1.2 implies the unique existence of
an anti-involution (−)∗ : Cl(V, q)→ Cl(V, q), i.e. an involution which is an antiautomorphism,
meaning (xy)∗ = y∗x∗ for all x, y ∈ Cl(V, q) satisfying v∗ = −v for v ∈ V . Furthermore
ω ◦ (−)∗ = (−)∗ ◦ ω (cf. [HN12, Lemma B.3.11].

Example 1.6.

(1) On Cl1 ∼= C, the anti-involution is just conjugation, so Ad(z)w = zwz−1 = zz−1 · w
and

Γ(Cl1) =

{
z ∈ C× : zz−1 =

z2

|z|2
∈ R

}
= R×1 t R×i.

(2) There is a similar result for the quaternions Cl2 ∼= H = 〈1, I, J,K〉. In this case

Γ(Cl2) = R×{α · 1 + δK : α, δ ∈ R, α2 + δ2 = 1} t R×{βI + γJ : β, γ ∈ R, β2 + γ2 = 1}.

Lemma 1.7. The Clifford group Γ(V, q) is invariant under ω and (−)∗.
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Proof. Let g ∈ Γ(V, q) and v ∈ V . Then Ad(g)v = ω(g)vg−1 ∈ V leads to

V 3 Ad(g)v = −ω (Ad(g)v) = −gω(v)ω(g)−1 = Ad (ω(g)) v,

so ω(g) ∈ Γ(V, q). Analgously

V ∈ Ad(g)v = − (Ad(g)v)∗ = −(g∗)−1v∗ω(g∗) = Ad(ω(g∗)−1)v ∈ V,

so ω(g∗) ∈ Γ(V, q) and hence g∗ ∈ Γ(V, q). �

Theorem 1.8. Let V be a finite-dimensional vector space and q a non-degenerate form on V .
Then the kernel of the representation Φ: Γ(V, q)→ GL(V ) is k×1.

Proof. See [HN12, Lemma B.3.13]. �

Definition 1.9 (Clifford norm). We define the Clifford norm of the algebra Cl(V, q) by

N : Cl(V, q)→ Cl(V, q), x 7→ xx∗.

Theorem 1.10. If x ∈ Γ(V, q), we have N(x)1 ∈ K×1, so the Clifford norm N : Γ(V, q)→ R×
is a homomorphism. Moreover,

N(ω(g)) = N(g) and N(Ad(g)h) = N(h) for g, h ∈ Γ(V, q).

Proof. As Γ(V, q) is invariant under (−)∗, we have gg∗ ∈ Γ(V, q). By the foregoing theorem,
gg∗ ∈ kerϕ will imply gg∗ ∈ k×1, so we are going to show that the precondition is indeed
satisfied.

We define an involutive antiautomorphism on Cl(V, q) by S(x) := ω(x∗). Then S fixes V
pointwise and, since Γ(V, q) is invariant under (−)∗, we have to show that Φ(g−1) = Φ(g∗) for
g ∈ Γ(V, q). If g ∈ Γ(V, q) and v ∈ V , the element Φ(g∗)v = ω(g∗)v(g−1)∗ = S(g)v(g−1)∗ ∈ V
is fixed by S, so

Φ(g∗)v = S(S(g)v(g−1)∗) = S((g−1)∗)vg,

so Φ(g∗) = Φ(g−1) and consequently gg∗ ∈ ker Φ = k×1. This means, we can define N the
desired way.

We yet have to check that N is a homomorphism. We calculate

N(gh)1 = ghh∗g∗ = g(N(h)1)g∗ = N(h)gg∗ = N(h)N(g)1.

The remaining relation are verified as follows. Applying ω to gg∗ = N(g)1 yieldsN(ω(g))1 =
ω(g)ω(g)∗ = N(g)1, so N(ω(g)) = N(g) and thus N(Ad(g)h) = N(ω(g)hg−1) = N(h). �

Theorem 1.11. If V is a finite-dimensional vector space and q a non-degenerate form on V ,
then the image of the representation Φ is given by the orthogonal group

im(Φ) = O(V, q) := {α : GL(V ) : α∗ ◦ q = q}.

This yields a short exact sequence

1→ K×� Γ(V, q)
Φ→ O(V, β)→ 1

where Φ acts as reflection

Φ(v)x = x− 2
q(v, x)

q(v, v)
v, x ∈ Γ(V, q), x ∈ Cl(V, q)

for non-isotropic vectors v ∈ V ⊂ Cl(V, q), i.e. q(v, v) 6= 0.
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Proof. For v ∈ V , by the generating relation for the Clifford algebra, we have

vv∗ = −v2 = −q(v, v)1,

and for g ∈ Γ(V, q) we have

(Φ(g)v)(Φ(g)v)∗ = ω(g)vg−1(ω(g)vg−1)∗ = ω(g)vg−1(g−1)∗(−v)ω(g)∗

= −N(g−1)q(v, v)ω(gg∗) = −N(g−1)q(v, v)ω(N(g)1) = −q(v, v)1.

Again, by the defining relation, we have Φ(g) ∈ O(V, q).
We now investigate the image of Φ. Let v ∈ V be non-isotropic, so ω(v) = −v and v−1 =

q(v, v)−1v. This implies

Ad(v)x = −q(v, v)−1vxv = q(v, v)−1v(vx− 2q(v, x)1) = x− 2
q(v, x)

q(v, v)
v =: σv,

i.e. the adjoint representation acts as the orthogonal reflection in the hyperplane {v}⊥. In
particular, Γ(V, q) contains all non-isotropic vectors of V ⊂ Cl(V, q) and imΦ contains all
orthogonal reflections. In the case of V being finite-dimensional and q being non-degenerate,
all of O(V, q) is indeed generated by reflections, so indeed im(Φ) = O(V, q). �

In particular, we have thus shown that Γ(V, q) is generated by the set ker(Φ) ∪ {v ∈
V : q(v, v) 6= 0}, since im(Φ) is generated by the orthogonal reflections Φ(v).

Example 1.12. In the case of Cl(V, q) ∼= Λ(V ) (i.e. q = 0), we have Λ(V )× = k×1 ⊕⊕∞
k=1 Λk(V ). As Λ(V ) is graded commutative, the even part is central and any two odd

elements anticommute. Decomposing any g ∈ Λ(V )× g = g+ + g− where g+ is even and g−
is odd, we have g+v = vg+ and g−v = −vg− for all v ∈ V . This means ω(g)v = vg, so
Λ(V )× = Γ(V, q) = ker Φ.

Theorem 1.13. The topological subgroup Γ(V, β) ≤ O(V, q) is a Lie group.

Proof. This follows, since O(V, q) is closed. �

1.3. Pin and Spin Groups.

Definition 1.14 (Pin and Spin groups). The kernel of the norm homomorphism N : Γ(V, q)→
k× is called the Pin group

Pin(V, q) := ker(N)

. The subgroup consisting of the even elements is called the Spin group

Spin(V, q) := Pin(V, q) ∩ Cl0(V, q).

Example 1.15. In the case of the Clifford algebra Cl1 ∼= C, ω(z) = z̄, the Clifford group
is R× ∪ iR×. By N(z) = |z|2, we have Pin1(R){±1,±i} and Spin1(R) = {±1}. For the
quaternions one can show that Pin2(R) ∼= S1.

Theorem 1.16. If k = R and q is positive definite, there are short exact sequences

1→ Z/2Z→ Pin(V, q)→ O(V, q)→ 1

and

1→ Z/2Z→ Spin(V, q)→ SO(V, q)→ 1.

Proof. For each non-zero v ∈ V we have N(v) = q(v, v) > 0, so for v′ := v
N(v) , we have

v′ ∈ Pin(V, q). Hence, the restriction Φ: Pin(V, q)→ O(V, q) is still surjective. This yields the
desired exact sequences. �
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Example 1.17. In fact, for general q, the homomorphism Φ: Spin(V, q)→ SO(V, q) need not
be surjective. We choose v1, v2 ∈ V such that q(v1, v1) = 1 = −q(v2, v2). The composition of
the reflections g := σv1σv2 is in SO(V, q). In Γ(V, q) we have N(v1v2) = N(v1)N(v2) = −1.
Then Φ(v1v2) = g and for any element γ ∈ Φ−1(g), we have γ = λv1v2, λ ∈ k×, so N(γ) =
−λ2 < 0 and consequently γ /∈ Spin(V, q). So in this case, Φ(Spin(V, q)) is a proper subgroup
of SO(V, q).

Theorem 1.18. The restriction of Φ to Spinn(R) is a double covering with discrete kernel
{±1}. We have a short exact sequence:

1→ Z/2Z→ Spinn(R)→ SO(n)→ 1

Also, Spinn(R) is connected.

Proof. One can show that SO(n) is connected and its fundamental group has at most two
elements, cf. [HN12, Prop. 17.1.9]. We only have to show that Spinn(R) is connected, i.e.
−1 ∈ Pinn(R)0. We identify the basis elements {e1, . . . , en} ⊂ Rn with the corresponding
elements of Cln and set

γ(t) := cos(t)1 + sin(t)e1e2.

Now (e1e2)2 = −1, so γ(t) = ete1e2 which using the grading automorphism ω implies
ω(γ(t)) = γ(t) and γ(t)−1 = γ(−t). This means

ω(γ(t))e1γ(t)−1 = cos(2t)e1 + sin(2t)e2

ω(γ(t))e1γ(t)−1 = −2 sin(2t)e1 + cos(2t)e2

ω(γ(t))eiγ(t)−1 = ei, i ≥ 3.

Hence γ is an element of the Clifford group. Now γ(t)γ(t)∗ = γ(t)γ(−t) = 1 and so γ(t) ∈
Pinn(R). Finally, γ(π) = −1 yields the claim. �

In particular the special case

1→ Z/2Z→ Spinn → SO(n)→ 1

shows that Spinn → SO(n) is the universal covering of SO(n) for n ≥ 3 with π1(SO(n)) = Z/2Z.

2. The Dirac Spinor Representation

2.1. The Dirac Spinor Representation. On Cn, we consider the default Hermitian scalar
product

〈v, w〉 :=
n∑
i=1

viwi.

Definition 2.1 (Contraction). For a ∈ Cn, we define the so-called contraction by a on Λk(Cn)
for k ≥ 1 by

ιa : Λk(Cn)→ Λk−1(Cn)

ιa(v1 ∧ . . . ∧ vk) :=

k∑
i=1

,(−1)i+1〈vi, a〉v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vk.

Since ιa ◦ ιa = 0, the universal property of the exterior product implies that we can lift these
contractions to a unique algebra homormophism ιω : Λ(Cn)→ Λ(Cn) for arbitrary ω ∈ Λ(Cn).

In the case of {e1, . . . , en} being an orthonormal basis for Cn, for 1 ≤ i ≤ n, we write
ιai =: ai : Λ(Cn)→ Λ(Cn) and call ai the annihilation operator for ei.
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Definition 2.2 (Multiplication). For ω ∈ Λ(Cn), we define the so-called multiplication by ω
as

µω : Λk(Cn)→ Λk−1(Cn), µω(η) := ω ∧ η.
In the case of {e1, . . . , en} being an orthonormal basis for Cn, for 1 ≤ i ≤ n, we write

a∗i =: µei : Λ(Cn)→ Λ(Cn) and call a∗i the creation operator for ei.

In fact, the operators ιω and µω are adjoint w.r.t. to the scalar product defined on the
exterior algebra by a dual pairing and identification of dual spaces (cf. [War89, pp. 59] for
further details).

The terms “annihilation” and “creation operators” come from the physical modelling of
particles as vectors ej . The operator a∗j creates a particle of type j in a configuration and aj
deletes it.

We denote the complexified exterior product by ΛC(Cn) := Λ(Cn) ⊗R C. For v ∈ Cn, we
define the map

fv : ΛC(Cn)→ ΛC(Cn), fv(ω) := (µv − ιv)(ω) = v ∧ ω − ιv(ω).

One can verify that contraction is an anti-derivation, i.e.

(1) ια(ω ∧ η) = ια(ω) ∧ η + (−1)kω ∧ ια(η)

if ω ∈ Λk(Cn). Using this, we compute

(fv ◦ fv)(ω) = v ∧ v ∧ ω︸ ︷︷ ︸
=0

−v ∧ ιv(ω)− (ιv(v ∧ ω)− ιv(ιv(ω))︸ ︷︷ ︸
=0

)

= −v ∧ ιv(ω)− (〈v, v〉ω + v ∧ ιv(ω))

= −〈v, v〉ω.
The map

f : Cn → EndR(ΛC(Cn)) ∼= EndC(Λ(Cn)), v 7→ fv

is R-linear. Now, by Cn ∼= R2n and the universal property of Clifford algeras, we see that the
property fv ◦ fv = −〈v, v〉 defines a unique extension of f to a representation

π : Cl2n → EndC(Λ(Cn)).

Since π has complex dimension dimC Λ(Cn) = 2n, so by [HBLM89, Thm. 5.7], it is the unique
irreducible representation of Cl2n.

Definition 2.3 (Dirac Spinor Representation). Since Spin2n ⊂ Cl2n we can restrict the rep-
resentation defined above to Spin2n, yielding the Dirac spinor representation

ρ′ := π|Spin2n
: Spin2n → EndC(Λ(Cn)).

2.2. Extending the Representation of SU(n). In fact the image of the Dirac spinor rep-
resentation restricts to the unitary endomorphisms U(Λ(Cn) ⊂ EndC(Λ(Cn)). Hence, we can
prove the following central result which shows that the Dirac spinor representation extends
the standard representation of SU(n) on Λ(Cn).

Theorem 2.4. There exists a morphism ψ : ρ→ ρ′ of Lie group representations, i.e. ψ : SU(n)→
Spin2n is a Lie group morphism making the diagram

(2) SU(n)

ρ

��

ψ // Spin2n

ρ′yy
U(Λ(Cn))
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commute.

Proof. The proof is due to [BH10, Thm. 2].
Using the isomorphism Cn ∼= R2n and the real part of the default hermitian scalar prod-

uct on Cn yields an inclusion U(n) � O(2n). The connected component of E ∈ O(2n) is
det−1({1}) = SO(2n). Since U(n) is connected as well, we have an inclusion U(n)� SO(2n),
and also SU(n) � SO(2n). This induces an injective Lie algebra morphism su(n) � so(2n).
This Lie algebra morphism can be uniquely integrated to a Lie group morphism between the
corresponding simply-connected Lie groups, so we get a Lie group morphism ψ : SU(n) →
Spin2n (for example cf. [HN12, Cor. 9.5.10]).

We have to show that ψ is really a morphism of representations. Since all the groups
SU(n),Spin2n,U(Λ(Cn)) are connected, by integration, it suffices to show check the analogous
claim or adjoint the morphism dψ on the level of Lie algebras, i.e. the following diagram
commutes:

(3) su(n)

dρ
��

dψ // so(2n)

dρ′yy
u(Λ(Cn))

Since each element from su(n) has vanishing trace, a basis of su(n) is given by the elements:

Ejk − Ekj k < j

i(Ejk + Ekj) k < j

i(Ejj − Ej+1,j+1) j = 1, . . . , n− 1

where Ejk has 1 at position (j, k) and 0 elsewhere.
Since Ejk · el = δlkej for basis elements el of Cn ∼= Λ1(Cn), the matrices Ejk act on Λ1(Cn)

the same way as the composed operators a∗jak. Hence, on Λ1(Cn) we get the formulas

dρ(Ejk − Ekj) = a∗jak − a∗kaj ,(4)

dρ(i(Ejk + Ekj)) = i(a∗jak − a∗kaj),(5)

dρ(i(Ejj − Ej+1,j+1)) = i(a∗jaj − a∗j+1aj+1).(6)

In the following, we want to show that dρ is defined accordingly on the whole algebra Λ(Cn).
Since for ρ : SU(n) → U(Λ(Cn)) and x ∈ SU(n) is an algebra morphism by definition, we

have

ρ(x)(ω ∧ η) = ρ(x)ω ∧ ρ(x)η,

so

dρ(X)(ω ∧ η) = (dρ(X)ω) ∧ η + ω ∧ (dρ(X)η)

for all X ∈ su(n). This means dρ is really a derivation-valued representation. Now, derivations
of Λ(Cn) are uniquely determined by their values on Λ1(Cn), so we are to show that the values
of dρ on the basis given above are really derivations. This is in fact true, since the composites
a∗jak are derivations. To see this, we at first recall that the annihilation operators ak are anti-

derivations (cf. 2.1) and that for the creation operators it holds that a∗j (ω ∧ η) = a∗jω ∧ w =
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(−1)pω ∧ a∗jη for ω ∈ Λp(Cn). We compute

a∗jak(ω ∧ η) = a∗j ((akω) ∧ η + (−1)pω ∧ (akη))

= (a∗jak)(ω) ∧ η + (−1)p(a∗jω) ∧ η
= (a∗jak)(ω) ∧ η + (−1)2p︸ ︷︷ ︸

=1

ω ∧ (a∗jak)(η),

so indeed a∗jak are derivations.

Now, since by definition ψ is inclusion and ρ(v)(ω) = v ∧ ω − ιv(ω), invoking the formulas
4, the factorization dρ = dρ′ ◦ dψ holds. �

3. The Spin(10) GUT

From the preceding chapter, we know the SU(5) GUT is given by the diagram:

(7) GSM
ϕ //

��

SU(5)

��
U(F ⊕ F ∗)

U(f)
// U(Λ(C5))

Horizontal composition with the diagram

(8) SU(5)
ψ //

ρ

��

Spin(10)

ρ′xx
U(Λ(C5))

yields:

(9) GSM
ψ◦ϕ //

��

Spin(10)

��
U(F ⊕ F ∗)

U(f)
// U(Λ(C5))

So, Spin(10) extends the Standard Model representation of SU(5) yielding the Spin(10) GUT.
One can further analyze how the representation of Spin(2n) on Λ(Cn) decomposes into two

irreducible subrepresentations w.r.t. the grading of Λ(Cn). Elements of the sub-representation
spaces are accordingly called left- or right-handed Weyl spinors. They play a role in the analysis
of massless particles of spin 1/2 within Relativistic Quantum Field Theory.
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