THE SO(10)-GRAND UNIFIED THEORY

JONATHAN WEINBERGER

ABSTRACT. The SO(10) GUT is constructed as an extension of the SU(5) Theory and naturally acts on the whole of $\Lambda(\mathbb{C}^5)$ as a representation space. In particular, in this theory the laws of hypercharges from the Standard Model arise as simple consequences by assuming the existence of right-handed neutrinos.

We construct the necessary representations from the Spin groups in even dimension. Thus, we give a brief introduction into the structure and representation theory of Clifford algebras and Spin groups.

The account is mostly based on [BH10], [HBLM89, Ch. 1], [MFAS64] and [HN12, Ch. 17, Sec. 1; App. B, Sec. 3].

Contents

1. Clifford Algebras and Spin Groups	1
1.1. Clifford Algebras	1
1.2. Clifford Groups	3
1.3. Pin and Spin Groups	5
2. The Dirac Spinor Representation	6
2.1. The Dirac Spinor Representation	6
2.2. Extending the Representation of $SU(n)$	7
3. The Spin(10) GUT	9
References	9

1. CLIFFORD ALGEBRAS AND SPIN GROUPS

1.1. Clifford Algebras. Let $k \in \{\mathbb{R}, \mathbb{C}\}$. In the following, all k-algebras are assumed finite-dimensional, associative and unital and with 1 denoting the respective one-element.

Definition 1.1 (Clifford Algebra). Let V be a k-algebra and q a quadratic form on V. We consider the tensor algebra

$$T(V) := \bigoplus_{n=0}^{\infty} V^{\otimes r}$$

and the ideal $I_q \leq T(V)$ generated by all elements of the form

$$v \otimes v + q(v) \cdot \mathbf{1}, \quad v \in V,$$

or equivalently

$$v \otimes w + w \otimes v = -2Q(v, w), \quad v, w \in V,$$

Date: April 30, 2013.

Paper for the Seminar "The Standard Model of Elementary Particles", held by W. Freyn and K. Große-Brauckmann at TU Darmstadt, Germany, Summer 2013.

with the polarization

$$Q(v, w) := \frac{1}{2} (q(v + w) - q(v) - q(w)).$$

The quotient algebra

$$Cl(V,q) := T(V)/I_q$$

is called the Clifford algebra of V with respect to q.

There is a canonical embedding $\iota \colon V \rightarrowtail \operatorname{Cl}(V,q)$ given as the composition

$$V = V^{\otimes 1} \xrightarrow{\iota} \operatorname{Cl}(V, q).$$

With this, the generating relations induce the following universal mapping property.

Theorem 1.2 (Universal Mapping Property). Let $f: V \to A$ be a k-linear map into a k-algebra A such that

$$f(v)^2 = -q(v) \cdot \mathbf{1}, \ v \in V.$$

Then there is a unique k-algebra homomorphism $\tilde{f}: Cl(V,q) \to A$ such that the following diagram commutes:

We give some lower-dimensional examples and also introduce the kind of real Clifford algebras we are going to work with in the following sections.

Example 1.3.

(1) If q is trivial, we can identify the Clifford algebra with the exterior algebra. We have k-linear isomorphism given by

$$\varphi \colon \mathrm{Cl}(V,0) \to \Lambda(V), \ \varphi(e_1 \cdot \ldots \cdot e_n) := e_1 \wedge \ldots \wedge e_n$$

for an orthonormal basis $\{e_1, \ldots, e_n\}$.

- (2) Let V be one-dimensional and $e \in V$ a basis element. As an algebra, Cl(V,q) is generated by $\mathbf{1}$ and $x := \iota(e)$ where by definition $x^2 = q(e,e) =: a$, so $Cl(V,q) \cong k[X]/(X^2 a) =: Cl(k, a)$. We now distinguish cases with respect to q:
 - If q = 0, then we obtain the ring of dual numbers, i.e. $Cl(k, 0) \cong k[X]/(X^2)$ which can be pictured as "first-order Taylor expansions" of formal polynomials.
 - If $q \neq 0$ and $a = b^2$ for some $b \in k$, then $x := b^{-1}e$ is a basis element of V such that q(x,x) = 1, so $Cl(k,a) = k[X]/(X^2 1)$. For $c := \frac{1}{2}(\mathbf{1} + x)$ and $\overline{c} := \frac{1}{2}(\mathbf{1} x)$ we obtain two idempotent elements in Cl(k,a) such that $c\overline{c} = 0$ and $c + \overline{c} = \mathbf{1}$, hence $Cl(k,a) \cong k \oplus k$.
 - If on the other hand a is not a square in k, the polynomial $X^2 a$ is irreducible over k and we obtain the splitting field $Cl(k, a) \cong k[X]/(X^2 a)$.
- (3) If $k = \mathbb{R}$, we consider on \mathbb{R}^{p+q} the graded standard scalar product given by

$$\langle v, w \rangle_{p,q} := \sum_{i=1}^{p} v_i w_i - \sum_{i=p+1}^{p+q} v_i w_i.$$

The corresponding Clifford algebra is denoted by

$$\mathrm{Cl}_{p,q} := \mathrm{Cl}\left(\mathbb{R}^{p+q}, \langle v, w \rangle_{p,q}\right).$$

However, in our cases of application, it suffices to stick to the definite algebras

$$Cl_n := Cl_{n,0}$$
.

(4) Using the above considerations we find $\text{Cl}_1 \cong \mathbb{C}$, $\text{Cl}_{0,1} \cong \mathbb{R} \oplus \mathbb{R}$. Furthermore $\text{Cl}_{2,0} \cong \mathbb{H}$, where \mathbb{H} denotes the skew-field of quaternions, and $\text{Cl}_{0,2} \cong \text{Cl}_{1,1} \cong M_2(\mathbb{R})$ (cf. [HBLM89, Ch. 1, Sec. 4]).

The dimension of a Clifford algebra is given by $\dim Cl(V, q) = 2^{\dim(V)}$.

The next consideration is important for the study of the structure and hence the representations of Clifford algebras.

Definition 1.4 (Involution and grading of Cl(V,q)). By the universal mapping property 1.2 there is a unique involutive automorphism $\omega \colon Cl(V,q) \to Cl(V,q)$ such that

$$\omega \circ \iota = -\iota$$

called the grading automorphism. This is due to the reason that the eigenspaces

$$Cl(V,q)_0 := \ker(\omega - 1)$$
 and $Cl(V,q)_1 := \ker(\omega + 1)$

introduce a $\mathbb{Z}/2\mathbb{Z}$ -grading on $\mathrm{Cl}(V,q)$, i.e.

$$Cl(V,q) \cong Cl(V,q)_0 \oplus Cl(V,q)_1$$

and

$$Cl(V,q)_a \cdot Cl(V,q)_b \subset Cl(V,q)_{a+b}, \ a,b \in \mathbb{Z}/2\mathbb{Z}.$$

1.2. Clifford Groups.

Definition 1.5 (Twisted adjoint representation and Clifford group). The twisted adjoint representation of the unit group $Cl(V, q)^{\times}$ on the algebra Cl(V, q) is defined by

Ad:
$$Cl(V,q)^{\times} \times Cl(V,q) \to Cl(V,q), (a,x) \mapsto Ad(a)x := \omega(a)xa^{-1}.$$

The stabilizer of the subspace $V \cong \iota(V) \subset \operatorname{Cl}(V,q)$ is called the *Clifford group*

$$\Gamma(V,q) := \left\{ a \in \operatorname{Cl}(V,q)^{\times} \colon \operatorname{Ad}(a)V = V \right\}.$$

The twisted adjoint representation of the unit group induces a representation of the Clifford group

$$\Phi \colon \Gamma(V,q) \to \operatorname{GL}(V), a \mapsto \operatorname{Ad}(a)|_V.$$

Again, the universal mapping property of Clifford algebras 1.2 implies the unique existence of an anti-involution $(-)^*$: $Cl(V,q) \to Cl(V,q)$, i.e. an involution which is an antiautomorphism, meaning $(xy)^* = y^*x^*$ for all $x,y \in Cl(V,q)$ satisfying $v^* = -v$ for $v \in V$. Furthermore $\omega \circ (-)^* = (-)^* \circ \omega$ (cf. [HN12, Lemma B.3.11].

Example 1.6.

(1) On $\text{Cl}_1 \cong \mathbb{C}$, the anti-involution is just conjugation, so $\text{Ad}(z)w = \overline{z}wz^{-1} = \overline{z}z^{-1} \cdot w$ and

$$\Gamma(\operatorname{Cl}_1) = \left\{ z \in \mathbb{C}^\times \colon \overline{z}z^{-1} = \frac{\overline{z}^2}{|z|^2} \in \mathbb{R} \right\} = \mathbb{R}^\times 1 \sqcup \mathbb{R}^\times i.$$

(2) There is a similar result for the quaternions $\operatorname{Cl}_2 \cong \mathbb{H} = \langle 1, I, J, K \rangle$. In this case

$$\Gamma(\operatorname{Cl}_2) = \mathbb{R}^{\times} \{ \alpha \cdot 1 + \delta K \colon \alpha, \delta \in \mathbb{R}, \ \alpha^2 + \delta^2 = 1 \} \sqcup \mathbb{R}^{\times} \{ \beta I + \gamma J \colon \beta, \gamma \in \mathbb{R}, \ \beta^2 + \gamma^2 = 1 \}.$$

Lemma 1.7. The Clifford group $\Gamma(V,q)$ is invariant under ω and $(-)^*$.

Proof. Let $g \in \Gamma(V,q)$ and $v \in V$. Then $\mathrm{Ad}(g)v = \omega(g)vg^{-1} \in V$ leads to

$$V \ni \operatorname{Ad}(g)v = -\omega \left(\operatorname{Ad}(g)v\right) = -g\omega(v)\omega(g)^{-1} = \operatorname{Ad}\left(\omega(g)\right)v,$$

so $\omega(q) \in \Gamma(V, q)$. Analgously

$$V \in Ad(g)v = -(Ad(g)v)^* = -(g^*)^{-1}v^*\omega(g^*) = Ad(\omega(g^*)^{-1})v \in V,$$

so
$$\omega(g^*) \in \Gamma(V, q)$$
 and hence $g^* \in \Gamma(V, q)$.

Theorem 1.8. Let V be a finite-dimensional vector space and q a non-degenerate form on V. Then the kernel of the representation $\Phi \colon \Gamma(V,q) \to \operatorname{GL}(V)$ is $k^{\times} \mathbf{1}$.

Definition 1.9 (Clifford norm). We define the Clifford norm of the algebra Cl(V,q) by

$$N: \operatorname{Cl}(V,q) \to \operatorname{Cl}(V,q), \ x \mapsto xx^*.$$

Theorem 1.10. If $x \in \Gamma(V, q)$, we have $N(x)\mathbf{1} \in K^{\times}\mathbf{1}$, so the Clifford norm $N \colon \Gamma(V, q) \to \mathbb{R}^{\times}$ is a homomorphism. Moreover,

$$N(\omega(g)) = N(g)$$
 and $N(\mathrm{Ad}(g)h) = N(h)$ for $g, h \in \Gamma(V, q)$.

Proof. As $\Gamma(V,q)$ is invariant under $(-)^*$, we have $gg^* \in \Gamma(V,q)$. By the foregoing theorem, $gg^* \in \ker \varphi$ will imply $gg^* \in k^{\times} \mathbf{1}$, so we are going to show that the precondition is indeed satisfied.

We define an involutive antiautomorphism on $\mathrm{Cl}(V,q)$ by $S(x) := \omega(x^*)$. Then S fixes V pointwise and, since $\Gamma(V,q)$ is invariant under $(-)^*$, we have to show that $\Phi(g^{-1}) = \Phi(g^*)$ for $g \in \Gamma(V,q)$. If $g \in \Gamma(V,q)$ and $v \in V$, the element $\Phi(g^*)v = \omega(g^*)v(g^{-1})^* = S(g)v(g^{-1})^* \in V$ is fixed by S, so

$$\Phi(g^*)v = S(S(g)v(g^{-1})^*) = S((g^{-1})^*)vg,$$

so $\Phi(g^*) = \Phi(g^{-1})$ and consequently $gg^* \in \ker \Phi = k^{\times} \mathbf{1}$. This means, we can define N the desired way.

We yet have to check that N is a homomorphism. We calculate

$$N(qh)\mathbf{1} = qhh^*q^* = q(N(h)\mathbf{1})q^* = N(h)qq^* = N(h)N(q)\mathbf{1}.$$

The remaining relation are verified as follows. Applying ω to $gg^* = N(g)\mathbf{1}$ yields $N(\omega(g))\mathbf{1} = \omega(g)\omega(g)^* = N(g)\mathbf{1}$, so $N(\omega(g)) = N(g)$ and thus $N(\mathrm{Ad}(g)h) = N(\omega(g)hg^{-1}) = N(h)$.

Theorem 1.11. If V is a finite-dimensional vector space and q a non-degenerate form on V, then the image of the representation Φ is given by the orthogonal group

$$\operatorname{im}(\Phi) = \operatorname{O}(V, q) := \{ \alpha \colon \operatorname{GL}(V) \colon \alpha^* \circ q = q \}.$$

This yields a short exact sequence

$$1 \to K^{\times} \rightarrowtail \Gamma(V, q) \stackrel{\Phi}{\to} \mathcal{O}(V, \beta) \to 1$$

where Φ acts as reflection

$$\Phi(v)x = x - 2\frac{q(v,x)}{q(v,v)}v, x \in \Gamma(V,q), x \in \mathrm{Cl}(V,q)$$

for non-isotropic vectors $v \in V \subset Cl(V,q)$, i.e. $q(v,v) \neq 0$.

Proof. For $v \in V$, by the generating relation for the Clifford algebra, we have

$$vv^* = -v^2 = -q(v, v)\mathbf{1},$$

and for $g \in \Gamma(V, q)$ we have

$$\begin{split} (\Phi(g)v)(\Phi(g)v)^* &= \omega(g)vg^{-1}(\omega(g)vg^{-1})^* = \omega(g)vg^{-1}(g^{-1})^*(-v)\omega(g)^* \\ &= -N(g^{-1})q(v,v)\omega(gg^*) = -N(g^{-1})q(v,v)\omega(N(g)\mathbf{1}) = -q(v,v)\mathbf{1}. \end{split}$$

Again, by the defining relation, we have $\Phi(q) \in O(V, q)$.

We now investigate the image of Φ . Let $v \in V$ be non-isotropic, so $\omega(v) = -v$ and $v^{-1} = q(v,v)^{-1}v$. This implies

$$Ad(v)x = -q(v,v)^{-1}vxv = q(v,v)^{-1}v(vx - 2q(v,x)\mathbf{1}) = x - 2\frac{q(v,x)}{q(v,v)}v =: \sigma_v,$$

i.e. the adjoint representation acts as the orthogonal reflection in the hyperplane $\{v\}^{\perp}$. In particular, $\Gamma(V,q)$ contains all non-isotropic vectors of $V \subset \operatorname{Cl}(V,q)$ and $\operatorname{im}\Phi$ contains all orthogonal reflections. In the case of V being finite-dimensional and q being non-degenerate, all of $\operatorname{O}(V,q)$ is indeed generated by reflections, so indeed $\operatorname{im}(\Phi) = \operatorname{O}(V,q)$.

In particular, we have thus shown that $\Gamma(V,q)$ is generated by the set $\ker(\Phi) \cup \{v \in V : q(v,v) \neq 0\}$, since $\operatorname{im}(\Phi)$ is generated by the orthogonal reflections $\Phi(v)$.

Example 1.12. In the case of $Cl(V,q) \cong \Lambda(V)$ (i.e. q=0), we have $\Lambda(V)^{\times} = k^{\times} \mathbf{1} \oplus \bigoplus_{k=1}^{\infty} \Lambda^k(V)$. As $\Lambda(V)$ is graded commutative, the even part is central and any two odd elements anticommute. Decomposing any $g \in \Lambda(V)^{\times}$ $g = g_+ + g_-$ where g_+ is even and g_- is odd, we have $g_+v = vg_+$ and $g_-v = -vg_-$ for all $v \in V$. This means $\omega(g)v = vg$, so $\Lambda(V)^{\times} = \Gamma(V,q) = \ker \Phi$.

Theorem 1.13. The topological subgroup $\Gamma(V,\beta) \leq O(V,q)$ is a Lie group.

Proof. This follows, since O(V, q) is closed.

1.3. Pin and Spin Groups.

Definition 1.14 (Pin and Spin groups). The kernel of the norm homomorphism $N: \Gamma(V,q) \to k^{\times}$ is called the *Pin group*

$$Pin(V, q) := ker(N)$$

. The subgroup consisting of the even elements is called the Spin group

$$\operatorname{Spin}(V,q) := \operatorname{Pin}(V,q) \cap \operatorname{Cl}_0(V,q).$$

Example 1.15. In the case of the Clifford algebra $\operatorname{Cl}_1 \cong \mathbb{C}$, $\omega(z) = \bar{z}$, the Clifford group is $\mathbb{R}^{\times} \cup i\mathbb{R}^{\times}$. By $N(z) = |z|^2$, we have $\operatorname{Pin}_1(\mathbb{R})\{\pm 1, \pm i\}$ and $\operatorname{Spin}_1(\mathbb{R}) = \{\pm 1\}$. For the quaternions one can show that $\operatorname{Pin}_2(\mathbb{R}) \cong \operatorname{S}^1$.

Theorem 1.16. If $k = \mathbb{R}$ and q is positive definite, there are short exact sequences

$$1 \to \mathbb{Z}/2\mathbb{Z} \to \operatorname{Pin}(V,q) \to \operatorname{O}(V,q) \to 1$$

and

$$1 \to \mathbb{Z}/2\mathbb{Z} \to \mathrm{Spin}(V,q) \to \mathrm{SO}(V,q) \to 1.$$

Proof. For each non-zero $v \in V$ we have N(v) = q(v,v) > 0, so for $v' := \frac{v}{N(v)}$, we have $v' \in \text{Pin}(V,q)$. Hence, the restriction $\Phi \colon \text{Pin}(V,q) \to \text{O}(V,q)$ is still surjective. This yields the desired exact sequences.

Example 1.17. In fact, for general q, the homomorphism $\Phi \colon \mathrm{Spin}(V,q) \to \mathrm{SO}(V,q)$ need not be surjective. We choose $v_1, v_2 \in V$ such that $q(v_1, v_1) = 1 = -q(v_2, v_2)$. The composition of the reflections $g := \sigma_{v_1}\sigma_{v_2}$ is in $\mathrm{SO}(V,q)$. In $\Gamma(V,q)$ we have $N(v_1v_2) = N(v_1)N(v_2) = -1$. Then $\Phi(v_1v_2) = g$ and for any element $\gamma \in \Phi^{-1}(g)$, we have $\gamma = \lambda v_1v_2$, $\lambda \in k^{\times}$, so $N(\gamma) = -\lambda^2 < 0$ and consequently $\gamma \notin \mathrm{Spin}(V,q)$. So in this case, $\Phi(\mathrm{Spin}(V,q))$ is a proper subgroup of $\mathrm{SO}(V,q)$.

Theorem 1.18. The restriction of Φ to $\mathrm{Spin}_n(\mathbb{R})$ is a double covering with discrete kernel $\{\pm 1\}$. We have a short exact sequence:

$$1 \to \mathbb{Z}/2\mathbb{Z} \to \operatorname{Spin}_n(\mathbb{R}) \to \operatorname{SO}(n) \to 1$$

Also, $\operatorname{Spin}_n(\mathbb{R})$ is connected.

Proof. One can show that SO(n) is connected and its fundamental group has at most two elements, cf. [HN12, Prop. 17.1.9]. We only have to show that $Spin_n(\mathbb{R})$ is connected, i.e. $-\mathbf{1} \in Pin_n(\mathbb{R})_0$. We identify the basis elements $\{e_1, \ldots, e_n\} \subset \mathbb{R}^n$ with the corresponding elements of Cl_n and set

$$\gamma(t) := \cos(t)\mathbf{1} + \sin(t)e_1e_2.$$

Now $(e_1e_2)^2 = -1$, so $\gamma(t) = e^{te_1e_2}$ which using the grading automorphism ω implies $\omega(\gamma(t)) = \gamma(t)$ and $\gamma(t)^{-1} = \gamma(-t)$. This means

$$\omega(\gamma(t))e_1\gamma(t)^{-1} = \cos(2t)e_1 + \sin(2t)e_2$$

$$\omega(\gamma(t))e_1\gamma(t)^{-1} = -2\sin(2t)e_1 + \cos(2t)e_2$$

$$\omega(\gamma(t))e_i\gamma(t)^{-1} = e_i, i \ge 3.$$

Hence γ is an element of the Clifford group. Now $\gamma(t)\gamma(t)^* = \gamma(t)\gamma(-t) = \mathbf{1}$ and so $\gamma(t) \in \operatorname{Pin}_n(\mathbb{R})$. Finally, $\gamma(\pi) = -\mathbf{1}$ yields the claim.

In particular the special case

$$1 \to \mathbb{Z}/2\mathbb{Z} \to \mathrm{Spin}_n \to \mathrm{SO}(n) \to 1$$

shows that $\operatorname{Spin}_n \to \operatorname{SO}(n)$ is the universal covering of $\operatorname{SO}(n)$ for $n \geq 3$ with $\pi_1(\operatorname{SO}(n)) = \mathbb{Z}/2\mathbb{Z}$.

2. The Dirac Spinor Representation

2.1. The Dirac Spinor Representation. On \mathbb{C}^n , we consider the default Hermitian scalar product

$$\langle v, w \rangle := \sum_{i=1}^{n} v_i \overline{w_i}.$$

Definition 2.1 (Contraction). For $a \in \mathbb{C}^n$, we define the so-called *contraction by a* on $\Lambda^k(\mathbb{C}^n)$ for $k \geq 1$ by

$$\iota_a \colon \Lambda^k(\mathbb{C}^n) \to \Lambda^{k-1}(\mathbb{C}^n)$$

$$\iota_a(v_1 \wedge \ldots \wedge v_k) := \sum_{i=1}^k (-1)^{i+1} \langle v_i, a \rangle v_1 \wedge \ldots \wedge \widehat{v_i} \wedge \ldots \wedge v_k.$$

Since $\iota_a \circ \iota_a = 0$, the universal property of the exterior product implies that we can lift these contractions to a unique algebra homormophism $\iota_\omega \colon \Lambda(\mathbb{C}^n) \to \Lambda(\mathbb{C}^n)$ for arbitrary $\omega \in \Lambda(\mathbb{C}^n)$.

In the case of $\{e_1, \ldots, e_n\}$ being an orthonormal basis for \mathbb{C}^n , for $1 \leq i \leq n$, we write $\iota_{a_i} =: a_i \colon \Lambda(\mathbb{C}^n) \to \Lambda(\mathbb{C}^n)$ and call a_i the annihilation operator for e_i .

Definition 2.2 (Multiplication). For $\omega \in \Lambda(\mathbb{C}^n)$, we define the so-called *multiplication by* ω

$$\mu_{\omega} \colon \Lambda^k(\mathbb{C}^n) \to \Lambda^{k-1}(\mathbb{C}^n), \quad \mu_{\omega}(\eta) := \omega \wedge \eta.$$

In the case of $\{e_1,\ldots,e_n\}$ being an orthonormal basis for \mathbb{C}^n , for $1 \leq i \leq n$, we write $a_i^* =: \mu_{e_i} \colon \Lambda(\mathbb{C}^n) \to \Lambda(\mathbb{C}^n)$ and call a_i^* the creation operator for e_i .

In fact, the operators ι_{ω} and μ_{ω} are adjoint w.r.t. to the scalar product defined on the exterior algebra by a dual pairing and identification of dual spaces (cf. [War89, pp. 59] for further details).

The terms "annihilation" and "creation operators" come from the physical modelling of particles as vectors e_j . The operator a_j^* creates a particle of type j in a configuration and a_j deletes it.

We denote the complexified exterior product by $\Lambda_{\mathbb{C}}(\mathbb{C}^n) := \Lambda(\mathbb{C}^n) \otimes_{\mathbb{R}} \mathbb{C}$. For $v \in \mathbb{C}^n$, we define the map

$$f_v : \Lambda_{\mathbb{C}}(\mathbb{C}^n) \to \Lambda_{\mathbb{C}}(\mathbb{C}^n), \ f_v(\omega) := (\mu_v - \iota_v)(\omega) = v \wedge \omega - \iota_v(\omega).$$

One can verify that contraction is an anti-derivation, i.e.

(1)
$$\iota_{\alpha}(\omega \wedge \eta) = \iota_{\alpha}(\omega) \wedge \eta + (-1)^{k} \omega \wedge \iota_{\alpha}(\eta)$$

if $\omega \in \Lambda^k(\mathbb{C}^n)$. Using this, we compute

$$(f_v \circ f_v)(\omega) = \underbrace{v \wedge v \wedge \omega}_{=0} - v \wedge \iota_v(\omega) - (\iota_v(v \wedge \omega) - \underbrace{\iota_v(\iota_v(\omega))}_{=0})$$

$$= -v \wedge \iota_v(\omega) - (\langle v, v \rangle \omega + v \wedge \iota_v(\omega))$$

$$= -\langle v, v \rangle \omega.$$

The map

$$f: \mathbb{C}^n \to \operatorname{End}_{\mathbb{R}}(\Lambda_{\mathbb{C}}(\mathbb{C}^n)) \cong \operatorname{End}_{\mathbb{C}}(\Lambda(\mathbb{C}^n)), \quad v \mapsto f_v$$

is \mathbb{R} -linear. Now, by $\mathbb{C}^n \cong \mathbb{R}^{2n}$ and the universal property of Clifford algeras, we see that the property $f_v \circ f_v = -\langle v, v \rangle$ defines a unique extension of f to a representation

$$\pi \colon \mathrm{Cl}_{2n} \to \mathrm{End}_{\mathbb{C}}(\Lambda(\mathbb{C}^n)).$$

Since π has complex dimension $\dim_{\mathbb{C}} \Lambda(\mathbb{C}^n) = 2^n$, so by [HBLM89, Thm. 5.7], it is the unique irreducible representation of Cl_{2n} .

Definition 2.3 (Dirac Spinor Representation). Since $\operatorname{Spin}_{2n} \subset \operatorname{Cl}_{2n}$ we can restrict the representation defined above to Spin_{2n} , yielding the *Dirac spinor representation*

$$\rho' := \pi|_{\mathrm{Spin}_{2n}} \colon \mathrm{Spin}_{2n} \to \mathrm{End}_{\mathbb{C}}(\Lambda(\mathbb{C}^n)).$$

2.2. Extending the Representation of SU(n). In fact the image of the Dirac spinor representation restricts to the unitary endomorphisms $U(\Lambda(\mathbb{C}^n) \subset End_{\mathbb{C}}(\Lambda(\mathbb{C}^n))$. Hence, we can prove the following central result which shows that the Dirac spinor representation extends the standard representation of SU(n) on $\Lambda(\mathbb{C}^n)$.

Theorem 2.4. There exists a morphism $\psi \colon \rho \to \rho'$ of Lie group representations, i.e. $\psi \colon \mathrm{SU}(n) \to \mathrm{Spin}_{2n}$ is a Lie group morphism making the diagram

commute.

Proof. The proof is due to [BH10, Thm. 2].

Using the isomorphism $\mathbb{C}^n \cong \mathbb{R}^{2n}$ and the real part of the default hermitian scalar product on \mathbb{C}^n yields an inclusion $\mathrm{U}(n) \rightarrowtail \mathrm{O}(2n)$. The connected component of $E \in \mathrm{O}(2n)$ is $\det^{-1}(\{1\}) = \mathrm{SO}(2n)$. Since $\mathrm{U}(n)$ is connected as well, we have an inclusion $\mathrm{U}(n) \rightarrowtail \mathrm{SO}(2n)$, and also $\mathrm{SU}(n) \rightarrowtail \mathrm{SO}(2n)$. This induces an injective Lie algebra morphism $\mathfrak{su}(n) \rightarrowtail \mathfrak{so}(2n)$. This Lie algebra morphism can be uniquely integrated to a Lie group morphism between the corresponding simply-connected Lie groups, so we get a Lie group morphism $\psi \colon \mathrm{SU}(n) \to \mathrm{Spin}_{2n}$ (for example cf. [HN12, Cor. 9.5.10]).

We have to show that ψ is really a morphism of representations. Since all the groups $\mathrm{SU}(n), \mathrm{Spin}_{2n}, \mathrm{U}(\Lambda(\mathbb{C}^n))$ are connected, by integration, it suffices to show check the analogous claim or adjoint the morphism $\mathrm{d}\psi$ on the level of Lie algebras, i.e. the following diagram commutes:

(3)
$$\mathfrak{su}(n) \xrightarrow{\mathrm{d}\psi} \mathfrak{so}(2n)$$

$$\mathfrak{u}(\Lambda(\mathbb{C}^n))$$

Since each element from $\mathfrak{su}(n)$ has vanishing trace, a basis of $\mathfrak{su}(n)$ is given by the elements:

$$E_{jk} - E_{kj} \qquad k < j$$

$$i(E_{jk} + E_{kj}) \qquad k < j$$

$$i(E_{jj} - E_{j+1,j+1}) \qquad j = 1, \dots, n-1$$

where E_{jk} has 1 at position (j, k) and 0 elsewhere.

Since $E_{jk} \cdot e_l = \delta_{lk} e_j$ for basis elements e_l of $\mathbb{C}^n \cong \Lambda^1(\mathbb{C}^n)$, the matrices E_{jk} act on $\Lambda^1(\mathbb{C}^n)$ the same way as the composed operators $a_i^* a_k$. Hence, on $\Lambda^1(\mathbb{C}^n)$ we get the formulas

(4)
$$d\rho(E_{ik} - E_{ki}) = a_i^* a_k - a_k^* a_i,$$

(5)
$$d\rho(i(E_{jk} + E_{kj})) = i(a_j^* a_k - a_k^* a_j),$$

(6)
$$d\rho(i(E_{jj} - E_{j+1,j+1})) = i(a_j^* a_j - a_{j+1}^* a_{j+1}).$$

In the following, we want to show that $d\rho$ is defined accordingly on the whole algebra $\Lambda(\mathbb{C}^n)$. Since for $\rho \colon \mathrm{SU}(n) \to \mathrm{U}(\Lambda(\mathbb{C}^n))$ and $x \in \mathrm{SU}(n)$ is an algebra morphism by definition, we have

$$\rho(x)(\omega \wedge \eta) = \rho(x)\omega \wedge \rho(x)\eta,$$

so

$$d\rho(X)(\omega \wedge \eta) = (d\rho(X)\omega) \wedge \eta + \omega \wedge (d\rho(X)\eta)$$

for all $X \in \mathfrak{su}(n)$. This means $d\rho$ is really a derivation-valued representation. Now, derivations of $\Lambda(\mathbb{C}^n)$ are uniquely determined by their values on $\Lambda^1(\mathbb{C}^n)$, so we are to show that the values of $d\rho$ on the basis given above are really derivations. This is in fact true, since the composites $a_j^*a_k$ are derivations. To see this, we at first recall that the annihilation operators a_k are anti-derivations (cf. 2.1) and that for the creation operators it holds that $a_j^*(\omega \wedge \eta) = a_j^*\omega \wedge w =$

 $(-1)^p \omega \wedge a_i^* \eta$ for $\omega \in \Lambda^p(\mathbb{C}^n)$. We compute

$$a_j^* a_k(\omega \wedge \eta) = a_j^* ((a_k \omega) \wedge \eta + (-1)^p \omega \wedge (a_k \eta))$$

$$= (a_j^* a_k)(\omega) \wedge \eta + (-1)^p (a_j^* \omega) \wedge \eta$$

$$= (a_j^* a_k)(\omega) \wedge \eta + \underbrace{(-1)^{2p}}_{=1} \omega \wedge (a_j^* a_k)(\eta),$$

so indeed $a_i^*a_k$ are derivations.

Now, since by definition ψ is inclusion and $\rho(v)(\omega) = v \wedge \omega - \iota_v(\omega)$, invoking the formulas 4, the factorization $d\rho = d\rho' \circ d\psi$ holds.

3. The Spin(10) GUT

From the preceding chapter, we know the SU(5) GUT is given by the diagram:

(7)
$$G_{SM} \xrightarrow{\varphi} SU(5)$$

$$\downarrow \qquad \qquad \downarrow$$

$$U(F \oplus F^*) \xrightarrow{U(f)} U(\Lambda(\mathbb{C}^5))$$

Horizontal composition with the diagram

(8)
$$SU(5) \xrightarrow{\psi} Spin(10)$$

$$\downarrow^{\rho} \qquad \qquad \downarrow^{\rho} \qquad \qquad \downarrow^{\rho'}$$

$$U(\Lambda(\mathbb{C}^5))$$

yields:

(9)
$$G_{\text{SM}} \xrightarrow{\psi \circ \varphi} \text{Spin}(10)$$

$$\downarrow \qquad \qquad \downarrow$$

$$U(F \oplus F^*) \xrightarrow{U(f)} U(\Lambda(\mathbb{C}^5))$$

So, Spin(10) extends the Standard Model representation of SU(5) yielding the Spin(10) GUT. One can further analyze how the representation of Spin(2n) on $\Lambda(\mathbb{C}^n)$ decomposes into two irreducible subrepresentations w.r.t. the grading of $\Lambda(\mathbb{C}^n)$. Elements of the sub-representation spaces are accordingly called left- or right-handed Weyl spinors. They play a role in the analysis of massless particles of spin 1/2 within Relativistic Quantum Field Theory.

References

[BH10] John C. Baez and John Huerta. The Algebra of Grand Unified Theories. *Bull.Am.Math.Soc.*, 47:483–552, 2010.

[HBLM89] Jr. H. Blaine Lawson and Marie-Louise Michelsohn. Spin Geometry. Princeton University Press, 1989.

[HN12] Joachim Hilgert and Karl-Hermann Neeb. Structure and Geometry of Lie Groups. Springer Monographs in Mathematics. Berlin: Springer, 2012.

[MFAS64] Raoul Bott Michael F. Atiyah and Arnold Shapiro. Clifford Modules. *Topology*, 3:pp. 3–38, 1964.

[War89] Frank W. Warner. Foundations of Differentiable Manifolds and Lie Groups. Springer, 1989.