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Abstract

In Section 1 we prove several classical isomorphism theorems for topological groups. Furthermore, we state sufficient
criteria for a topological group to be isomorphic to an inner direct product. In order to do so, we will need an open
mapping theorem for topological groups which yields that every surjective morphism between topological groups is open
if the groups satisfy certain compactness properties.

We proceed in Section 2 by analyzing the structure of certain locally compact groups based on their subgroups. Weil’s
Lemma consists of two structure results for locally compact Hausdorff groups G. In particular, for each g ∈ G the cyclic
group 〈g〉 is either discrete and infinite or has compact closure in G. We continue by classifying certain Abelian topological
groups as direct products of a free Abelian group with an open subgroup. Additionally, we state an existence criterion for
discrete subgroups of locally compact Abelian Hausdorff groups. Finally, we give some results of purely algebraic nature.

This treatise was prepared for the seminar “Locally Compact Groups” held by PD. Dr. Ralf Gramlich in August 2010
at TU Darmstadt. The seminar was structured according to Markus Stroppel’s book [3]. Further resources are provided
under http://www3.mathematik.tu-darmstadt.de/index.php?id=84&evsid=23&&evsver=880.

Notation

The mappings will be denoted as actions from the right. The image of a point x under a map f will be written x f .
Composition of mappings transforms likewisely, i.e. x ( f ◦g) :=

�

x f
�g

.

1 Topological Aspects of the Isomorphism Theorems

Definition 1.1 (Quotient Map). Let f : X → Y be a surjective map between topological spaces. We call f a quotient map,
if it induces the quotient topology on Y . This means every subset U ⊂ Y is open if and only U f −1

⊂ X is open.

Lemma 1.2 (Universal Mapping Property of Quotient Maps). We consider maps between topological spaces h: X → Y and
g : Y → Z with f := h◦ g. If h is a quotient map and f is continuous, then g is also continuous. Hence, we have the following
situation:

X h � ,2

f

88Y
g // Z

Proof. Let O ⊂ Z be open. As f is continuous, O f −1
is open. By definition of the mappings Og−1h−1

= O f −1
. As h induces

the quotient topology on Y and Og−1h−1
is open, also Og−1

is open.

Theorem 1.3 (Homomorphism Theorem for Topological Groups [2]). Let ϕ : G→ H be a morphism of topological groups
and π: G → G/kerϕ the natural projection. Then there exists a uniquely determined bijective morphism of topological
groups ϕ̃ : G/kerϕ→ imϕ such that the diagram

G
ϕ //

π ##

H

G/kerϕ
ϕ̃

;;

is commutative.

Proof. The isomorphism theorem for groups yields the desired bijective group morphism ϕ̃. As shown by [3, Lemma
6.2(a)], the projection π is open. From Lemma 1.2 we derive that ϕ̃ is continuous.

Example 1.4 (The Torus as a Quotient). Let (T, ·) be the 1-torus. The kernel of the surjective morphism

R→ T, t 7→ exp(2πit)

is Z, so we obtain a continuous group isomorphism R/Z∼= T.

http://www3.mathematik.tu-darmstadt.de/index.php?id=84&evsid=23&&evsver=880


This is actually an isomorphism of topological groups as we prove later on by means of an open mapping theorem for
locally compact groups.

The following lemma is needed for a technical argument in the proof of the upcoming theorem. It states the universal
mapping properties of monomorphisms and epimorphisms. Further considerations are made in [2, Appendix 3, Types of
Morphisms].

Lemma 1.5 (Universal Mapping Property of Injective and Surjective Maps). Let f : A→ B be a set map.

(i) The map f is injective if and only if for all sets T and maps g, h: T → A with g ◦ f = h ◦ f we have g = h.

T
g //
h
// A

f // B

(ii) The map f is surjective if and only if for all sets T and maps g, h: B→ T with f ◦ g = f ◦ h we have g = h.

A
f // B

g //
h
// T

Theorem 1.6 (Split Isomorphism Theorem for Topological Groups). We consider topological groups G and H with a
continuous group morphism π: G→ H and a continuous section σ : H → G of π, i.e. σ ◦π = idH . Then there is a uniquely
determined morphism γ: G/kerπ → H such that π = κ ◦ γ. Furthermore, σ is an embedding and π is a quotient map.
Letting κ: G→ G/kerπ denote the natural projection then yields the following commutative diagram:

G

κ ##

π � ,2
H? _

σ
oo

G/kerπ

γ

;;

Proof. By the homomorphism theorem 1.3 for topological groups there exists a unique continuous group isomorphism
γ: G/kerπ→ H such that π= κ ◦ γ.

Next, we show γ = (σ ◦κ)−1. By the section property of σ we obtain (σκ)γ = σπ = idH . From this we conclude
κγ = κγ(σκγ). Invoking Lemma 1.5, by the injectivity of γ we have κ = κ(γσκ) and by the surjectivity of κ it follows
that idG/kerπ = γ(σκ).

Hence, γ−1 = σ ◦ κ is also continuous, so γ is a homeomorphism. Since additionally π = κ ◦ γ we find that π is a
quotient map.

We denote the corestriction of σ to its image by τ: H → Hσ. Because σ is a section of π, we have τ ◦π|Hσ = idH and
π|Hσ ◦σ = idHσ , so τ is a bijective map with continuous and open inverse τ−1 = π|Hσ : Hσ → H. Thus, τ is continuous
and σ is an embedding, i.e. a homeomorphism onto its image.

Lemma 1.7. Let π: G→Q be a quotient morphism of topological groups with kernel N . Then π is an open map.

Proof. Let U ⊂ G be open. Then UN =
⋃

x∈N U x is also open. By the property of the quotient topology, Uπ is open iff

Uππ
−1

is open. As UN = Uππ
−1

, the claim follows.

Theorem 1.8. Let π: G→Q be a quotient morphism of topological groups with N := kerπ� G. If H ≤ G, then

α: NH/N → Hπ, Nh 7→ hπ

is an isomorphism of topological groups and

β : H/(N ∩H)→ NH/N , (N ∩H)h 7→ Nh

is a bijective morphism of topological groups.

Proof. We denote the natural projections by πN∩H : H → H/(N ∩H) and by πN : NH → NH/N . Then, by the well-known
second isomorphism theorem for groups, there exists the desired bijective group homomorphism β : H/(N∩H)→ NH/N .
If γ: H ,→ NH is the inclusion, then πN∩H ◦ β = γ ◦πN and the following diagram commutes:
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H �
� γ //

πN∩H
_��

NH

πN
_��

� � // G

π
_��

H/(N ∩H)
β

// NH/N
α
// Hπ �
� // Q

As the composition πN∩H ◦ β = γ ◦ πN is continuous and πN∩H is a quotient map, we can apply Lemma 1.2 which
shows the continuity of β .

Indeed, α is well-defined, since Nh= Nh̃ ∈ NH/N implies hh̃−1 ∈ N = kerπ, i.e. hπ = h̃π. Straightforward calculation
shows that it is a homomorphism, too.

Let ϕ := π|NH : NH → Hπ. From imϕ = im(πN ◦ α) = Hϕ = Hπ we conclude imα = Hπ, so α is surjective. We now
assume α were not injective. Then there would be an Nh ∈ NH/N such that Nh 6= N and Nhα = 1Q ∈ Hπ. Consequently,
we would have h ∈ H ∩ N û and hπ = 1Q contradicting the fact kerπ= N .

The restriction ϕ = π|NH is continuous. As πN is a quotient map, Lemma 1.2 implies the continuity of α. To see that
α is open, let U ⊂ NH/N be an open set. Then Uπ

−1
is open. Lemma 1.7 implies that ϕ = π|NH is open, so Uπ

−1ϕ = Uα

is an open set. In sum, α is therefore an isomorphism of topological groups.

Theorem 1.9 (Open Mapping Theorem). We consider a locally compact and σ-compact group G. If H is a locally compact
Hausdorff group, then every surjective morphism G→ H is open.

Proof. In the proof, we treat two distinct cases. If ϕ is injective, we only need to show that its inverse is continuous.
Using the σ-compactness of G and arguing that H is not meager gives for every identity neighborhood in G an identity
neighborhood in H whose ϕ−1-image lies in the fixed neighborhood in G. Assuming that ϕ is not injective, we can do the
proof similarly for the canonical mapping induced via the isomorphism theorem which already suffices for the openness
of ϕ.

Let G =
⋃

n∈N Cn be a locally compact group and (Cn)n∈N a countable family of compact subsets of G. For a locally
compact Hausdorff group H, we consider a surjective morphism ϕ : G→ H between topological groups.

We at first assume ϕ to be injective, hence bijective. Then it suffices to show the continuity of ϕ−1, i.e. continuity at
1H . In order to do so, We consider an identity neighborhood U ⊂ G. Using the local compactness of G there is a compact
identity neighborhood V ⊂ U . By [3, Lemma 3.21], we can choose V such that V = V−1 and V · V ⊂ U . For each n ∈ N
we have an open cover of Cn by Cn ⊂ Cn · V ◦ =

⋃

c∈Cn
cV ◦. As the sets Cn are compact, we find for each n ∈ N a finite

subset Fn ⊂ Cn such that Cn ⊂ FnV ◦. Then G =
⋃

n∈N FnV and therefore H =
⋃

n∈N(FnV )ϕ. We define A :=
⋃

n∈N(Fn)ϕ.
As Fn is finite, the image (Fn)ϕ is also finite. Thus, A is countable. The locally compact Hausdorff space H =

⋃

a∈A a · (V )ϕ
is not meager by [3, Lemma 1.29]. We can therefore choose a set a · (V )ϕ, a ∈ A, with non-empty interior which also
implies (Vϕ)◦ 6= ;. Hence, for some v ∈ V the set Vϕ is a neighborhood of vϕ in H. Then W := Vϕ · Vϕ is an identity
neighborhood in H with Wϕ−1

= V · V ⊂ U .
Finally we consider the case that ϕ is not injective. Let π: G → G/kerϕ be the canonical projection. Then by

the isomorphism theorem 1.3 there is a bijective continuous group morphism β : G/kerϕ → H such that ϕ = π ◦ β .
Now, G/kerϕ is also locally compact as shown in [3, Theorem 6.7/(b)]. Furthermore, Gπ = G/kerϕ is σ-compact.
So we analogously can do the above proof replacing G by the quotient G/kerϕ and ϕ : G → H by the induced map
β : G/kerϕ→ H. Thus β is open and consequently also ϕ is.

Example 1.10. The exponential morphism R→ T, t 7→ exp(2πit) is an open map, since R=
⋃

n∈N[−n, n] is σ-compact.
See also Example 1.4.

Next we consider two cases of bijective topological group homorphisms which are not open, hence no isomorphisms.

Example 1.11. The following examples show that both of the conditions that G is σ-compact or H is Hausdorff are
crucial.

We denote the discrete topology by D and the indiscrete topology by U . Clearly, (R,U ) is locally compact. Also,
(R,D) is locally compact, as for any x ∈ (R,D) the singleton {x} is an open finite set, thus compact.

But (R,D) is not σ-compact. Compact spaces with respect to D are finite and countable unions of finite sets are
countable, but R is uncountable.

The set-theoretical identities (R,D)→ (R,U ) and (R,U )→ (R,D) are continuous group isomorphisms, but not open,
hence, no isomorphisms of topological groups.
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Example 1.12. Let F be a nontrivial finite group. If c is an infinite cardinal number, we consider the product P := F c

which can be identified with
∏

i∈I F for an arbitrary index set I of cardinality c. Then

P × P =
∏

i∈I

F ×
∏

i∈I

F ∼=
∏

i∈I
∐

I

F = F c+c

as groups. From set theory it is known that c+ c = c as c is infinite, so overall

P × P = F c × F c ∼= F c+c = F c = P.

Moreover, these identifications respect the discrete topology D as well as the product topology P , so we have isomor-
phisms α: (P,D)2 → (P,D) and (P,P )2 → (P,P ) in the sense of topological groups. Changing the second factor from
(P,P ) into (P,D) we obtain a new map, which is again continuous. Calling this morphism β , we define

γ := α−1 × β : (P,D)× (P,D)× (P,P )→ (P,D)× (P,D)× (P,P )

i.e.

((u, v )α, y, z)γ = (u, v , (y, z)β)

for u, v , y, z ∈ P . This is easily seen to be a bijective endomorphism of topological groups. But, since in general the
discrete topology D is actually finer than P , the inverse β−1 is not continuous. Thus, the inverse group morphism
γ−1 = α× β−1 is not continuous either, so γ is not a homeomorphism. In particular, it is a continuous bijective group
endomorphism, but not an automorphism of topological groups.

Theorem 1.13. Let G be a topological groups with subgroups A, B ≤ G such that AB = G and A∩ B = {1}. Then we have
the following:

(i) The multiplication

ϕ : A× B→ G, (a, b) 7→ a · b

is a continuous bijective map.

(ii) The map ϕ is a group homomorphism iff both A and B are normal in G.

(iii) If B is closed and normal in G, A and G/B are locally compact and A is σ-compact, then ϕ is a homeomorphism.

Proof. (i) From (A× B)ϕ = AB = G we deduce, that ϕ is surjective. Then, ϕ is simply the group multiplication
map which is continuous by construction of the group topology on G. We only have to show injectivity. Let
(a, b)ϕ = (a′, b′)ϕ for a, a′ ∈ A and b, b′ ∈ B, i.e. ab = a′b′. This is equivalent to a′−1a

︸ ︷︷ ︸

∈A

= b′b−1
︸ ︷︷ ︸

∈B

which implies

a′−1a ∈ A∩ B = {1}. Thus, a = a′ and analogously b = b′.
(ii) Let A, B Å G and x := a−1 b−1ab ∈ G. From b−1ab ∈ A it follows that a−1(b−1ab) = x ∈ A, too. Similarly, we have

x ∈ B, i.e. x ∈ A∩ B = {1}. Therefore, G is Abelian, so for all (a, b), (a′, b′) ∈ A× B it follows

ϕ((a, b) · (a′, b′)) = ϕ(aa′, bb′) = (aa′)(bb′) = aba′b′ = ϕ(a, b)ϕ(a′, b′)

as desired.
Conversely, if ϕ is a group homomorphism, then it is a group isomorphism by (i). As A× {1} is the kernel of the
second coordinate projection A× B→ B, the subgroup A× {1} is normal in A× B. Thus, A= (A× {1})ϕ is normal
in G as the image of a normal subgroup under the surjective morphism ϕ. Analogously, we obtain B Å G.

(iii) If π: G → G/B is the canonical projection, its restriction ψ := π|A : A → G/B = (AB)/B is a group morphism.
Surjectivity is clear, because for Bab ∈ G/B we simply calculate Bab = Ba · Bb = Ba · B = Ba = aψ. Thus, to prove
injectivity, we consider Ba = Ba′ for some a, a′ ∈ A, i.e. aa′−1 ∈ B. Triviality of A∩ B yields a = a′. Because of [3,
Proposition 6.6], by the closedness of B the quotient G/B is a Hausdorff space. Therefore, we can apply the open
mapping theorem and observe that ψ is also open, hence an isomorphism of topological groups.
Then π◦ψ−1 is continuous. Obviously for g = ab ∈ G where a ∈ A and b ∈ B, we have gπψ

−1
= (aπ)ψ

−1
·Bψ

−1
= a.

This leads to

gϕ
−1
=
�

gπψ
−1

,
�

gπψ
−1
�−1

g
�

∈ A× B

which implies that ϕ−1 is continuous as tupling and composing of functions preserves continuity. Hence ϕ is open.
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Definition 1.14 (Interior Direct Product of Topological Groups). Let G be a topological group with normal subgroups
A and B such that AB = G and A∩ B = {1}. If the multiplication map of the preceding theorem is an isomorphism of
topological groups, then G ∼= A× B. In this case, G is said to be the interior direct group of A and B, written

G = A⊕ B.

Example 1.15. Investigating the multiplicative group G := C× implies for A := R>0 and B := T that G = AB = R>0T and
A∩ B = T∩R>0 = {1}. Then C× ∼= R>0 ⊕T via the multiplication map.

Example 1.16. Let A := Z, B := rZ for a number r ∈ R \Q and G := A+ B = Z+ rZ ≤ R. Then A= Z and B = rZ are
discrete in R so A× B = Z× rZ is discrete as well, but G is not discrete.

2 Cyclic Subgroups

Theorem 2.1 (Weil’s Lemma). Let G be a locally compact Hausdorff group and H = Z or H = R. If ϕ : H → G is a
morphism of topological groups, either ϕ induces an isomorphism H → Hϕ or Hϕ is compact in G.

Proof. In case H = Z it is not necessary to require ϕ to be continuous, since continuity follows from the fact that we
consider Z under the discrete topology. In the upcoming calculations, we only have to focus on the set G′ := Hϕ, thus
we replace G by G′ and ϕ by its corestriction on G′, also denoted by ϕ. Then, G′ is a commutative subgroup of G by [3,
Lemma 4.4].

In the following, we on one side consider the case that ϕ is not injective. Then G′ is compact by a homomorphism
theorem argument. On the other side, if ϕ is not injective, we distinguish between the case when there is a bounded
neighborhood in G′ such that its preimage under ϕ is bounded in H or, contrarily, all the neighborhoods have unbounded
preimages. In the first case we apply the open mapping theorem. Then, in fact H ∼= Hϕ as topological groups. To
prove the unbounded case, we derive the compactness of G′ by a computational argument for a suitbale compact identity
neighborhood.

For the sake of simplification, in the following, for a real interval I we will denote the set I ∩H by I , also if H = Z and
hence, I ∩H is not an interval.

Now, assuming ϕ is not injective, we pick a k ∈ kerϕ \ {0}. If π: H → H/〈k〉 is the canonical projection, by the
homomorphism theorem ϕ induces the bijective continuous group morphism β : H/〈k〉 → G′ such that ϕ = π ◦ β . As
H/〈k〉= Hπ is compact, also Hπ◦β = Hϕ = G′ is.

We henceforth take ϕ to be injective. By definition, Hϕ lies densely in G′, therefore every nonempty neighborhood in
G′ has a nonempty preimage in H under ϕ.

If there is a neighborhood U in G′ so Uϕ
−1
⊂ H is bounded, then Uϕ−1 =: C is compact by the Heine-Borel theorem.

Obviously, x ∈ Uϕ
−1ϕ iff there exists an h ∈ H such that x = hϕ ∈ U which finally is equivalent to x ∈ U ∩ Hϕ. Thus,

U ∩ Hϕ = Uϕ
−1ϕ. As the compact image Cϕ is closed in the hausdorff space Hϕ, the set Uϕ

−1ϕ has compact closure

Uϕ−1ϕ = Cϕ = Cϕ. By the homogenity of the topological group Hϕ, we find for every point in Hϕ a relatively compact
neighborhood, thus Hϕ is locally compact. This allows us to apply the open mapping theorem 1.9, so ϕ : H → Hϕ is
an open map. Also, ϕ is assumed to be an injective topological group morphism, thus altogether it is an isomorphism
H → Hϕ.

Now let each neighborhood in G′ have an unbounded ϕ-preimage. We absurdly assume there were a neighborhood
V ⊂ G′ whose preimage were bounded above. Then we could pick a t ∈ H with tϕ ∈ V ◦ and 2tϕ − V ∈ U (tϕ) would
have a ϕ-preimage which would be bounded below. Altogether, (V ∩ (2tϕ − V ))ϕ

−1
would be bounded in contradiction

to the premise that Vϕ is unbounded. Hence, for all h ∈ H and neighborhoods V ⊂ G′ we find [h,∞)ϕ ∩ V 6= ; which
means the image [h,∞)ϕ is dense in G′. Let B(0) be an identity neighborhood basis in G′ and U ⊂ G′ be a compact
identity neighborhood. By [3, Lemma 3.17], we have the representation

G′ = [h,∞)ϕ =
⋂

V∈B(0)

V + [h,∞)ϕ ⊂ U◦ + [h,∞)ϕ.

Of course, also the inclusion U◦ + [h,∞)ϕ ⊂ G′ holds, thus these two sets are equal.
As U is compact and the family (U + x)x∈(0,∞) admits an open covering, there exists a finite subset F ⊂ (0,∞) such

that U ⊂ U + Fϕ. Consequently, F has a maximal element, say m :=max F . Again, from the compactness of U we derive
that for an arbitrary g ∈ G′, also U + g is compact. In particular, the set [0,∞) ∩ (U + g)ϕ

−1
has a smallest element s.

Now, sϕ− g ∈ U implies that there exists f ∈ F such that sϕ− g ∈ U+ f ϕ, i.e. (s− f )ϕ ∈ U+ g. The minimality of s leads
to s− f < 0. Then s < f ≤ m and thus g ∈ sϕ−U ⊂ [0, m]ϕ−U . The value m is independent from g, so G′ ⊂ [0, m]ϕ−U
is compact.
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Definition 2.2 (Free Abelian Group). Let F be an Abelian group. Then F is said to be free Abelian (of rank c) if there exist
a set X of cardinality c and a map ι : X → F so the following universal property holds: For every Abelian group A and set
map ϕ : X → A there is a unique group morphism ϕ̃ : F → A such that ϕ = ι ◦ ϕ̃, i.e. the following diagram commutes:

X ι //

ϕ
��

F

ϕ̃��
A

Lemma 2.3. For a free Abelian group F , the map ι : X → F is injective.

Proof. Given an injective map ϕ : X → A where A is an Abelian group, we obtain a unique morphism ϕ̃ : F → A such that
ϕ = ι ◦ ϕ̃. Assuming ι were not injective, we would find x , y ∈ X such that x 6= y and x ι = y ι. Then x ι◦ϕ̃ = y ι◦ϕ̃, i.e.
xϕ = yϕ contradicting the injectivity of ϕ.

The preceding lemma justifies the identification of X with its image under the inclusion X ι ⊂ F . The following
instructive example in this manner shows X as a “basis” of F similiarly to the concept in Linear Algebra.

Example 2.4. For every natural number n ∈ N the group Zn is free Abelian of rank n. To see this, we define X := {1, . . . , n}
and the injection ι : X ,→ Zn by ι(i) := (0, . . . , 1, . . . , 0) with 1 at the i-th position and 0 elsewhere. Given a map ϕ : X → A
where A is an Abelian group, there is obviously a unique one group morphism ϕ̃ : Zn→ A satisfying ϕ = ι◦ϕ̃. It is defined
by

(z1, . . . , zn)ϕ̃ :=
n
∑

i=1

zi i
ϕ

where multiplication by zi means the zi-fold sum.

Lemma 2.5. Let A be an Abelian topological group and B ≤ A an open subgroup such that A/B is a free Abelian topological
group. Then there exists a is a discrete subgroup C ≤ A such that A∼= B⊕ C and C ∼= A/B as topological groups.

Proof. The idea is to obtain a morphism by the universal mapping property of the free Abelian group who embeds A/B
isomorphically into A.

Consequenty, as A/B is free Abelian, there exist a set X and an injection ι : X → A/B. We now define a map ϕ : X → A
making

X ι //

ϕ
��

A/B

A

κ

>>

commute by choosing for every x ∈ X an element xϕ such that x ι = B + xϕ. Well-definedness of ϕ follows from the
injectivity of ι. To see this, we assume x 6= x̃ for x , x̃ in X . Then x ι 6= x̃ ι, i.e. we can choose elements a, ã ∈ A such that
aκ = B+ a = x ι 6= x̃ ι = B+ ã = ãκ. Setting a := xϕ and ã := x̃ϕ yields the desired mapping.

Considering the diagram above, we have ι(ϕ̃κ) = ϕκ= ι. Hence, ϕ̃κ makes the diagram

X ι //

ι
  

A/B

ϕ̃κ}}
A/B

commute, so it must equal the morphism from the universal property, i.e. ϕ̃κ= ι̃ = idA/B.
We set C := F ϕ̃ = (A/B)ϕ̃. Then kerκ = B and imκ = A/B imply Aκ = Bκ + Fκ = (B + (A/B)ϕ̃)κ. Considering

the preimages we find A = B + C . Now, we establish the injectivity of the restricted projection κ|C : C → A/B. Taking
c, c′ ∈ C = F ϕ̃ where c 6= c′ means, there exist a, a′ ∈ A/B where c = (B + a)ϕ̃ and c′ = (B + a′)ϕ̃ while aκ 6= (a′)κ. The
above observation ϕ̃κ = idA/B leads to cκ = (B+ a)ϕ̃κ = B+ a 6= B+ a′ = (B+ a′)ϕ̃κ = (c′)κ, which shows the injectivity
of κ|C and B ∩ C = ker(κ|C) = {0}.

Finally, combining the results A= B+ C and B ∩ C = {0}, we apply theorem 1.13 and establish that

ψ: B× C → B+ C , (b, c) 7→ b+ c

is a bijective morphism of topological groups.
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Corollary 2.6. Let A be an Abelian topological group. If B ≤ A is subgroup such that A/B is discrete and isomorphic to Zn

for some n ∈ Z, then A∼= B×Zn as topological groups.

Proof. Obviously, the preceding theorem can be applied for C = Zn.

Theorem 2.7. Let A be an Abelian locally compact Hausdorff group. If V ∈ U (0A) is compact in A and B := 〈V 〉 ≤ A, then
there exists a discrete subgroup D ≤ B such that B/D is compact and D ∩ V = {0}. In particular, we can choose D ∼= Zd for
some d ∈ N.

Proof. To prove the claim, we decompose B into the sum of a compact set and a finitely generated group C . The desired
group D turns out to be a particular subgroup of C . Arguing that the image of C under the canonical projection B→ B/D
has no infinite cyclic subgroup, we show that its image is dense which leads to the compactness of B/D.

We choose a compact identity neighborhood V and consider the subgroup B := 〈V 〉 generated by it. Then there exists
an open set O ⊂ V ⊂ B and O+ B is open as the translate of B by an open set. By B ⊂ O+ B ⊂ B + B = B we tell that
B = O + B again is open. Setting W := V ∪ (−V ) we gain a compact identity neighborhood, hence B = 〈W 〉 is locally
compact and W =−W . We recursively define

W0 := {0}
Wn+1 :=Wn +W

for n ∈ N. Then B is countably covered by B =
⋃

n∈NWn. As W2 =W +W is compact, we find a finite subset F ⊂ B such
that W2 ⊂ F +W ◦ ⊂ F +W . Putting C := 〈F〉 we derive

W1 ⊂W2 ⊂ 〈F〉+W = C +W.

As Wn ⊂ C +W implies

Wn+1 =Wn +W ⊂ C + (W +W ) = C +W2 = C +W,

the above yields B =
⋃

n∈NWn ⊂ C +W , i.e. B = C +W .
Now, C is finitely generated. This means, every element in C can be written as a finite linear combination of generating

elements with integer coefficients. Put another way, the set

{n ∈ N: There exists an injective morphism ι : Zn→ C .}

is bounded. Thus, there is a maximal natural number d ∈ N such that there exists a discrete subgroup D ≤ C with
D ∼= Zd . Then D ∩W is finite as a discrete subset of a compact set. Considering D′ := mD for a sufficiently large m ∈ N,
we obtain {0}= D′ ∩W ⊃ D′ ∩ V .

Considering the canonical projection π: B→ B/D′, we claim Cπ does not contain any discrete infinite cyclic group. If
this were wrong, we could find a discrete subgroup of C isomorphic to Zd+1 in contradiction to the minimality of d. Too
see the compactness of Cπ, we initially remark that for any c ∈ C the cyclic group is either finite or non-discrete because
of [3, Corollary 3.13]. From Weil’s Lemma 2.1 we derive that 〈cϕ〉 is relatively compact in B/D, therefore Cπ =

∑

f ∈F 〈 f
π〉

is compact.
Eventually, B/D = Cπ +Wπ = Cπ +Wπ is compact.

Finally, we prove a useful characterization of finite cyclic groups. As a corollary we show that for a commutative field
F , every finite subgroup of the group of units F× is cyclic.

Definition 2.8. The map

ϕ : N→ N, n 7→ |{a ∈ Z/nZ: ord(a) = d}|

is called Euler’s totient function or ϕ-Function.

The proof of the following theorem can be found in many texbooks, i.e. [1, 4.5, Remark 4].

Theorem 2.9 (Totient Function and Generators of a Cyclic Group). The number of the generators of cyclic group of order
d is given by

ϕ(d) = |(Z/dZ)×|.

Theorem 2.10. A finite group G with ord G = n is cyclic iff for every divisor d|n there is at most one subgroup of order d.
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Proof. Let G be cyclic. If there exist H, H ′ ≤ G of order d for d|n, then H ∼= Z/dZ ∼= H ′ by the classification theorem for
cyclic groups, cf. [1, 1.3, Theorem 3].

To prove the converse statement, we consider an element a ∈ G of order d|n. Then, every other element b ∈ G of
order d is contained in 〈a〉. We define a function f : N→ N0 where f (k) is the number of all elements of order k in G.
Then, {b ∈ G : ord(b) = d} ⊂ 〈a〉 implies f (d)≤ ϕ(d). On the other hand, by the preceding theorem, we have

n= |G|=

�

�

�

�

�

�

∐

d|n

{a ∈ G : ord a = d}

�

�

�

�

�

�

=
∑

d|n

f (d)

≤
∑

d|n

ϕ(d) =

�

�

�

�

�

�

∐

d|n

{a ∈ Z/dZ: ord a = d}

�

�

�

�

�

�

= |Z/nZ|= n.

Then
∑

d|n

ϕ(d)− f (d)
︸ ︷︷ ︸

≥0

= 0,

so ϕ(d) = f (d) for all d|n. In particular, f (n) = ϕ(n) > 0, thus there exists an element a ∈ G of order n, so necessarily
G = 〈a〉 is cyclic.

Corollary 2.11. Let F be a commutative field. Then every finite subgroup of the group of units F× is cyclic.

Proof. Let n := ord F× and G ≤ F× be a subgroup of order d|n. Then, for all elements g ∈ G we have ord g|d, so g is
a zero of the polynomial f := X d − 1 ∈ F[X ]. As f has at most d distinct zeros in F , we conclude, there is no other
subgroup of order d in F×. Thus, invoking Theorem 2.10, F× is cyclic.
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